
S KU LEUVEN
FACULTEIT ECONOMIE EN
BEDRIJFSWETENSCHAPPEN

Advances in Process Mining:

Artificial Negative Events

and Other Techniques

Proefschrift voorgedragen tot

het behalen van de graad van

Doctor in de Toegepaste

Economische Wetenschappen

door

Seppe K.L.M. Vanden Broucke

Nummer 458 2014

iii

Daar de proefschriften in de reeks van de Faculteit Economie en Bedrijfsweten-
schappen het persoonlijk werk zijn van hun auteurs, zijn alleen deze laatsten
daarvoor verantwoordelijk.

Since the theses in the series published by the Faculty of Economics and Business
are the personal work of their authors, only the latter bear full responsibility.

iv

v

Committee

Chairperson Prof. dr. Martina Vandebroek KU Leuven
Promotor Prof. dr. Bart Baesens KU Leuven
Co-Promotor Prof. dr. Jan Vanthienen KU Leuven

Prof. dr. Josep Carmona Universitat Politècnica de Catalunya
Prof. dr. Arthur ter Hofstede Queensland University of Technology
Prof. dr. Jochen De Weerdt KU Leuven
Prof. dr. Guoqing Chen Tsinghua University

vi

vii

To my parents, my sister, and Xinwei.
For their unwavering support and endless love.

viii

ix

Acknowledgments

“Don’t walk behind me; I may not lead.
Don’t walk in front of me; I may not follow.

Just walk beside me and be my friend.”
– Albert Camus

A wise man—who most likely heard it from another wise person, as such things
tend to go—once told me that a PhD journey feels not completely unlike a walk
through the desert, in search of a beckoning light which calls you in the distance.
To get there, however, one has to face many trials and tribulations, stumbling,
falling in the sand, getting up and falling again. I’ll stop here, but will add to
this the fact that the journey is in large part about the encounters with fellow
“nomads”. Some of these fellow travelers you only meet for a few steps. Others
join and walk with you for longer. Some of them are of quiet demeanor, whereas
others have much to share. Some of them are there to pick you up and get you
back on your feet just as you thought you’d fallen for the last time. In everything
we undertake in life, it serves well to pause and be thankful for those around you.
Although my name is the only one printed on the cover of this dissertation, it is
by no means a solitary e�ort, and it could not have been completed without the
support of others. I thus wish to dedicate a few pages to explicitly thank those
kind fellow spirits who were with me “on the road”, to use the famous words of
Jack Kerouac.

First of all, it is both traditional and appropriate to thank my promotors, Prof.
Bart Baesens and Prof. Jan Vanthienen. I believe the term “advisor” to be more
�tting in this context, as both of them have been amazing sources of advice
throughout the past three years. I immensely appreciate the freedom you both
gave me in pursuing my research and I greatly value having gotten the oppor-
tunity to learn from and work with you both. Jan, thank you for the chats on

x ACKNOWLEDGEMENTS

research culture, the hell that is bureaucracy, and the good old days of IT re-
search, back when it was okay to spend a week on learning that new crazy
insert-buzzword-here-oriented language just out of personal interest. We need
this mind set more in research nowadays. Bart, thank you for showing that you
should push and hustle when you want something. Not to be afraid to send a
cold email pitch (and to send it again when a reply doesn’t follow). To show
how to take on many things at once, feel overwhelmed (just a little), then decide
to just bite harder and come out stronger. For not spending too much words or
time on useless small talk, dilly-dallying or �ne print. . . But also for spending
just enough time whenever it was needed most. I thank you both.

I also wish to extend my gratitude to my family. I thank my parents for their
support. Trying to understand some specialized, di�cult to relate to topic is not
easy, let alone the fact that the “PhD-ing” child is often not in the mood to talk
research. But you took it in stride and were there for me, always and uncondi-
tionally. Also for my sister Freyja, I can do nothing but simply say thank you. I
have no way to express how much I valued our weekend talks. I think of you as
my older and wiser sister in the best way possible, even though I am the older sib-
ling purely by chance. Your advice, thoughts, maturity, discipline, kindness and
view on life have been immensely inspiring to me. Chris, you have truly been
like a brother. I greatly enjoyed talking with you about games (mostly talking),
photography (mostly listening), cars (mostly listening as well), or just appreciat-
ing your company and hanging out. I hope we will have more opportunities to
do so in the future. Lastly, I wish to thank my grandmother, grandfather, aunts,
uncles, nephews and nieces. It was always heart-warming to meet.

Even as a PhD “student”, you spend most of your time with colleagues, and I am
lucky to have found myself surrounded by excellent characters, so much even
that it is di�cult to �gure out where to begin. Perhaps at the beginning: Pieter,
thank you for welcoming me in what would later become the “psychiatric-slash-
co�ee-break-slash-leave-us-alone-we’re-working” o�ce. I could not have imag-
ined a better o�ce-mate for the �rst year or so. I greatly enjoyed our discussions
on research, and those dealing with psychological and philosophical (or both?)
questions even more. The same can be said for Thomas, another colleague I suf-
fered missing once gone. Thomas, talking with you was always a pleasure, be it
about machine learning, human learning, research, physics, little bits of trivia,
or life worries. Jochen, you referred to me as being your “research soul mate” in
your dissertation; well, I want to repay the favor and state that the same goes
for you. From start to �nish, you acted as a great mentor and welcoming con-
versation partner and motivated me to explore my �rst small research ideas (as

ACKNOWLEDGEMENTS xi

a fellow PhD student) as well as providing feedback all the way to my �nal dis-
sertation (as a committee member)—thank you. Filip, in the beginning, I didn’t
fully know what to make of you—and I’m still not quite sure now, but what I
can say is that you are one of the most excellent, unprejudiced (thankfully so!)
and nose-on-the-facts people I ever met. I have to admit I even picked up a thing
or two from you (as you so aptly noticed yourself), and I think back with great
fondness to our travels together. Aimée, I couldn’t do a proper acknowledgment
without mentioning you. Whether it was talking in the o�ce (that being: me
invading your o�ce for a bit), during our Dodentocht practice walks or during
Chinese course, I always found in you a very like-minded friend, let alone fel-
low China. . . connaisseur. You’re the best “buddy” to have around. I also wish
to thank Alex. For being a great travel companion1, but also for being a great,
relaxed, and humorous friend in general. I am also grateful for my wonderful
colleagues post-o�ce-move. Johannes, it was a pleasure to work with you as
well as to discuss all sorts of topics, ranging from music, programming Java for
ProM, computer con�gurations, or the latest Britney-related musings of fellow
researchers. Estefanía, the same goes for you. I really enjoyed getting to know
you as a driven, compassionate and friendly colleague. I wish you both the best
of luck in your further endeavors. I’d also like to thank my other colleagues
throughout the past years: Flavius, Gayane, Helen, Jonas, Karel, Philippe, Libo,
Tom, Véronique, Willem and Wouter. I also extend my thanks to all the profes-
sors in my department, whom it was a pleasure to work with. Finally, I also wish
my best to all the new colleagues having started recently.

I also want to thank some other friends. Though we could only meet rarely, rest
assured that I remember those meetings—and friendships—with great fondness.
In Leuven, I want to thank Pieter, Flip, Ileen, and Jerome for being such good
friends. Not only during my PhD, but also before. Back in Ghent (or what’s
rapidly becoming Ninove again for most of you), I wish to thank Brecht, Dorien,
Evelien, Robin and Tim for all the great times. I am proud to call you all among
my friends.

I also wish to express my gratitude for all the people involved in bringing—and
welcoming—me to new places. Euripides said: “Experience, travel—these are
as education in themselves.” and I can do nothing more than agree with this. I
therefore wish to thank Prof. Arthur ter Hofstede for welcoming me to Queens-
land, Australia, as well as acting as an excellent committee member, providing

1I hereby grant you the right to become the exclusive authority regarding the Mambo No 5 story
retelling2.

2Though kindly don’t retell it too often.

xii ACKNOWLEDGEMENTS

not only bright insights regarding process mining and business process man-
agement related topics, but also a staggering amount of movie trivia. Without
doubt, my stay in Brisbane was worth remembering thanks also to Ra�aele, Suri-
adi, Arthem, Keith, Prof. Moe Wynn and all other friendly people there. Thanks
for having me! I also wish to thank Prof. Josep Carmona for welcoming me to
Barcelona, Spain, and also for being an upstanding as well as outstanding com-
mittee member. I greatly value your support and always constructive feedback,
starting all the way from my �rst seminar. Jorge, thank you as well for being a
great companion in Spain. With our noses in the same direction and with simi-
lar ways of thinking, we hit it o� immediately. I also thank Prof. Guoqing Chen
and Prof. Qiang Wei for always providing an excellent welcome in China. I also
want to explicitly thank Prof. Chen to act as a committee member and for the
great talk and e�orts when I was in China a few months ago. I also wish to thank
Prof. Jae-Yoon Jung at Kyung Hee University, for the splendid collaboration and
the invitation to South Korea. I also wish to thank some other people I had the
pleasure to work with and learn from throughout the past years. In particular, I
am grateful to Walter Vanherle, Maurizio Queirazza, Peter Beirsmans, Koen de
Meulemeester, Geert Smets and François Eyskens.

Finally, it is also an acknowledgment-tradition to end with that one, special per-
son in one’s life. Xinwei—my Julie—you are without doubt that person for me.
Thank you for all the love, happiness and support you have given me. Thank you
for all the amazing, wonderful moments we shared together, and thank you for
keeping up with me during my most stressful days. You are the most beautiful
woman I know in every sense of the word, and I look forward to continuing our
story together. To put it in the clumsy words of a level one Chinese speaker...我
写做一个博士是就像寻找一个明灯。鑫伟，你给我认识这个明灯不是知识

和学问的，可是一个爱的。你是我光，我的万事。我爱你一辈子，我们会

一直在一起，谢谢你。

– Seppe Vanden Broucke, September 2014

xiii

Contents

Front Matter iii

Committee v

Acknowledgments ix

Table of Contents xx

English Summary xxi

Dutch Summary xxiii

German Summary xxv

Chinese Summary xxvii

French Summary xxix

Outline xxxi

xiv CONTENTS

I Arti�cial Negative Event Based Techniques for Busi-
ness Process Conformance Checking 1

1 Introduction 3

1.1 Process Mining . 3

1.1.1 An Avalanche of Data . 3

1.1.2 Knowledge Discovery from Event Logs 5

1.1.3 The Event Log as the Center Point of Analysis 7

1.1.4 Crossing Boundaries . 9

1.2 Preliminaries . 14

1.2.1 De�nitions . 14

1.2.2 State of the Art . 20

1.3 Arti�cial Negative Events . 25

2 Improved Arti�cial Negative Event Induction 31

2.1 Introduction . 31

2.2 Preliminaries . 33

2.2.1 Related Work . 33

2.2.2 Arti�cial Negative Event Generation 34

2.3 Improvements . 43

2.3.1 Improvement 1: Revised Temporal Constraint Con�-
dence Measures . 43

2.3.2 Improvement 2: Variant Calculation with Loop Discovery 45

2.3.3 Improvement 3: Dynamic Windows 48

2.3.4 Improvement 4: Dependency Based Negative Event Gen-
eration . 51

2.4 Experimental Results . 53

2.5 Conclusions . 57

CONTENTS xv

3 Conformance Checking with Weighted Arti�cial Negative Events 59

3.1 Introduction . 59

3.2 Preliminaries . 60

3.3 Weighted Arti�cial Negative Events 64

3.3.1 Rationale and Formalization 64

3.3.2 Scalability . 67

3.3.3 Empirical Validation . 68

3.4 Checking Precision and Generalization 78

3.5 Experimental Evaluation . 80

3.5.1 Setup . 82

3.5.2 Fixed Log Sizes . 83

3.5.3 Varying Log Sizes . 89

3.6 Discussed Topics . 91

3.6.1 Trace Replay with Positive and Negative Events 91

3.6.2 Additional Con�guration Parameters 112

3.6.3 Alternative Generation Strategies 114

3.6.4 Dealing with Noise . 117

3.7 Conclusions . 121

4 Arti�cial Negative Events as Unobserved Events 123

4.1 Introduction . 123

4.2 Uncovering Implementation Gaps . 124

4.3 Enhancing Declarative Process Models 125

4.3.1 Introduction . 125

xvi CONTENTS

4.3.2 Discovering Super�uous Modeled Behavior 129

4.3.3 Extending the Declarative Model 131

4.3.4 Example Case . 132

4.4 Towards an Event Existence Classi�cation Framework 137

II Other Advances in Process Mining 141

5 Fodina: Robust and Flexible Heuristic Process Discovery 143

5.1 Introduction . 143

5.2 Preliminaries . 144

5.2.1 Literature Overview . 144

5.2.2 De�nitions . 148

5.2.3 Heuristic Dependency Based Process Discovery 149

5.3 Identi�ed Issues . 154

5.3.1 Unconnected Tasks . 155

5.3.2 Non-�tting Process Models 156

5.3.3 ICS Fitness Calculation . 156

5.3.4 Incorrect Conversion to Petri Nets 158

5.3.5 Mining Duplicate Tasks . 158

5.3.6 Long-distance Dependencies 161

5.3.7 Mining Split and Join Semantics 163

5.4 Process Discovery with Fodina . 165

5.4.1 Discovering Causal Nets . 165

5.4.2 Causal Net Conformance Checking Metrics 172

CONTENTS xvii

5.5 Experimental Evaluation . 177

5.5.1 Experimental Setup . 178

5.5.2 Results . 183

5.6 Application: Bidimensional Process Discovery with BPMN 190

5.6.1 Rationale . 194

5.6.2 Comparative Study . 196

5.6.3 Implementation . 198

5.6.4 Illustrating Example . 199

5.7 Conclusions . 200

5.8 Experimental Result Tables . 202

6 Event-Granular Real-Time Decomposed Conformance Analysis 213

6.1 Introduction . 213

6.2 Preliminaries . 214

6.2.1 Related Work . 215

6.2.2 De�nitions . 216

6.3 Methodology . 216

6.3.1 Phase 1: Decomposition . 218

6.3.2 Phase 2: Event Dispatching 219

6.3.3 Phase 3: Replay . 220

6.3.4 Phase 4: Reporting and Visualization 223

6.3.5 Implementation . 223

6.4 Case Example . 225

6.4.1 Description . 225

6.4.2 Experimental Scenario Evaluation 226

6.4.3 Experimental Comparison . 228

6.5 Conclusions and Future Work . 231

xviii CONTENTS

7 Explaining Clustered Process Instances 233

7.1 Introduction . 233

7.2 Trace Clustering . 235

7.2.1 State of the Art . 235

7.2.2 Problem Statement . 236

7.3 Alternative Cluster Explanation Techniques 238

7.3.1 Visual Analysis of the Process Models 238

7.3.2 Process Model Similarity Metrics 238

7.3.3 Automated Dissimilarity Visualization in Process Models 239

7.3.4 Footprints and Behavioral Pro�les 239

7.3.5 White Box Classi�cation Model Learning 240

7.3.6 Cross-Cluster Conformance Checking 241

7.4 Instance-Level Explanations with SECPI 241

7.4.1 Constructing the Data Set . 241

7.4.2 Deriving Explanations from a Support Vector Machine
(SVM) Classi�er . 243

7.4.3 Algorithm SECPI (Search for Explanations for Clusters of
Process Instances) . 244

7.5 Experimental Evaluation . 246

7.5.1 Experimental setup . 247

7.5.2 Results of comparing SECPI to white box techniques . . . 248

7.6 Conclusion . 252

CONTENTS xix

8 A Conformance Analysis Benchmarking Framework 255

8.1 Introduction . 255

8.2 Process Models Quality Metrics . 256

8.2.1 Accuracy Metrics . 256

8.2.2 Comprehensibility Metrics . 260

8.2.3 Combining Metrics . 260

8.3 Architectural Requirements . 261

8.3.1 Ease of Use . 261

8.3.2 Reproducibility of Experiments 261

8.3.3 Comparative Consistency . 262

8.3.4 Computation Management 262

8.3.5 Extensibility . 262

8.4 Framework Architecture . 263

8.4.1 General Architecture . 263

8.4.2 Particular Items . 263

8.5 Future Work . 268

8.5.1 Other Process Model Representations 268

8.5.2 Graphical Output . 268

8.5.3 Root Cause Analysis . 269

8.5.4 Automatizing Process Discovery 269

8.5.5 Fine Tuning Event Classi�cation and Non-control-�ow
Conformance Checking . 269

8.5.6 Standard Validation Event Log Set 270

8.5.7 Fine Tuning Computation Management 270

xx

8.5.8 Cross-Validation . 270

8.5.9 Recommending Process Mining Techniques 271

8.6 Petri Net Based Event Log Generation 271

8.6.1 Rationale . 271

8.6.2 Objectives . 272

8.6.3 Functionality . 273

8.6.4 Architecture and Use Cases 280

8.6.5 Comparison . 280

8.7 A Benchmarking Study . 282

8.7.1 Related Work . 283

8.7.2 Methodology . 284

8.7.3 Results . 289

8.7.4 Recommendations towards Choosing a Process Discov-
ery Technique . 293

9 Conclusions 297

9.1 Overview . 297

9.2 Future Work . 299

End Matter 301

List of Figures 307

List of Tables 312

Bibliography 312

Publication List 325

Doctoral Dissertations List 331

xxi

English Summary

Process mining is the research area that is concerned with knowledge discovery
from event logs, which are recorded and stored by a wealth of information sys-
tems, used to support, model and govern operational processes. Event logs can
contain up to millions of events, and organizations face the challenge of extract-
ing value from this vast data repository, so as to improve their business processes
by learning from insights derived from these data sets. Typically, the �eld of
process mining is structured by categorizing its analysis tasks into a taxonomy
containing three broad task types: process discovery, conformance checking, and
process enhancement.

Although great strides have been made in the �eld of process mining towards
improving business processes and deriving insights from historical event-based
data repositories, the �eld faces some notable di�culties. One particular di�-
culty is that process mining, with process discovery in particular, is frequently
limited to the setting of unsupervised learning, as negative information (i.e.
events that were prevented from taking place) are often unavailable in real-life
event logs. Multiple solutions have been proposed to resolve this aspect, with
one of them encompassing the arti�cial induction of negative events based on
available, positive, information. This concept is put forward as the topic of focus
throughout the �rst part of this thesis. We outline an improved arti�cial negative
event generator, and subsequently enhance this technique with a scoring mech-
anism to assign a measure of con�dence to induced negative events. Next, we
show how the induced negative events can be applied in a conformance check-
ing setting, as they allow us to develop a comprehensive conformance checking
framework in line with standard machine learning practices, allowing to as-
sess the recall, precision and generalization of a process model. Finally, we also
show how arti�cial negative events can be applied to uncover implementation
problems by using them as highlighters of unobserved behavior.

xxii ENGLISH SUMMARY

The second part of this thesis outlines a number of additional contributions
which are not directly related to the concept of arti�cial negative events. In
particular, a novel heuristic process discovery technique is presented, based on a
long lineage of related process discovery algorithms, but with a particular focus
on robustness and �exibility. Next, based on replay strategies developed through-
out the �rst part of the thesis, an event-granular conformance analysis technique
is presented which can be applied towards enabling real-time monitoring of busi-
ness activities. Next, a technique for explaining event log cluster solutions on
an instance-granular level is presented. Finally, a benchmarking framework is
developed to enable the automated set-up of large-scale conformance analysis
experiments.

xxiii

Nederlandse Samenvatting

Process mining behelst het onderzoeksdomein dat zich toelegt op het ontginnen
van kennis uit “event logs”, data sets die worden geregistreerd en opgeslagen
door informatiesystem die instaan voor het ondersteunen, modeleren en sturen
van operationele processen. Event logs kunnen miljoenen events bevatten, en
organisaties worden aldus geconfronteerd met de uitdaging om waarde te extra-
heren uit deze data repositories, met als einddoel het verbeteren van bedrijfspro-
cessen door te leren uit inzichten, gehaald uit deze data sets. De analysetaken be-
schreven in het gebied van process mining worden gebruikelijk opgedeeld in de
volgende drie categorieën: process discovery (procesontginning), conformance
checking (conformiteitsanalyse) en process enhancement (procesverbetering).

Process mining heeft sterk bijgedragen tot het verbeteren van bedrijfsprocessen
en het extraheren van inzichten uit historische, event-gebaseerde data sets, maar
wordt desalniettemin geconfronteerd met enkele opvallende moeilijkheden. Een
welbepaalde uitdaging volgt uit het feit dat process mining, en procesontginning
in het bijzonder, vaak gelimiteerd is tot de setting van niet-gesuperviseerde leer-
taken, aangezien negatieve informatie (events die niet konden of mochten uitge-
voerd worden) vaak afwezig zijn in echte, niet-synthetische, event logs. Verschil-
lende oplossingen zijn voorgesteld om dit probleem te verhelpen, waaronder een
techniek die zich toelegt op de arti�ciële inductie van negatieve events gebaseerd
op aanwezige, positieve informatie. Dit concept wordt naar voor geschoven als
onderwerp voor het eerste deel van deze thesis. We beschrijven een verbeterde
arti�ciële negatieve event generatietechniek, en ampli�ceren deze vervolgens
met een scoresysteem om zo een betrouwbaarheidswaarde te verscha�en aan
geïnduceerde negatieve events. Vervolgens illustreren we hoe gegenereerde ne-
gatieve events kunnen aangewend worden in een conformiteitsanalyse setting,
en werken hiertoe een raamwerk uit in lijn met standaard machine learning prak-
tijken om zo de recall, precisie en generalisatie kwaliteiten van een procesmodel

xxiv DUTCH SUMMARY

te evalueren. Ten slotte tonen we aan hoe arti�ciële negatieve events aangewend
kunnen worden om implementatieproblemen op te sporen door ze te gebruiken
als aanwijzers van niet-geobserveerd gedrag.

Het tweede deel van deze thesis beschrijft aanvullende contributies die niet
rechtstreeks gerelateerd zijn aan het concept van arti�ciële negatieve events.
Een vernieuwende heuristische procesontginning-techniek wordt voorgesteld,
voortbouwend op een lange reeks gerelateerde technieken, maar die zich spe-
ci�ek toelegt op robuustheid en �exibiliteit. Vervolgens wordt er een event-
granulaire conformiteitsanalyse techniek voorgedragen, gebaseerd op replay-
technieken die ontwikkeld werden in het eerste deel van de thesis, teneinde be-
drijfsactiviteiten in real-time op te volgen, gevolgd door een techniek die toelaat
om verklaringen af te leiden voor event log cluster-oplossingen op een instantie-
granulair niveau. Tot slot werd een benchmarking raamwerk ontwikkeld om
de automatische set-up van grootschalige conformiteitsanalyse experimenten
mogelijk te maken.

xxv

Deutsche Zusammenfassung

Process Mining ist der Forschungsbereich, betro�en mit Wissensentdeckung aus
Ereignisprotokollen, die aufgezeichnet und durch eine Fülle von Informations-
systemen gespeichert sind, und verwendet werden um operativen Prozesse zu
unterstützen, zu modellieren und zu regieren. Ereignisprotokolle können bis zu
Millionen von Ereignissen enthalten, und Organisationen stehen vor der Heraus-
forderung der Gewinnung von Wert aus diesem riesigen Daten-Repository, um
ihre Geschäfts-prozesse abgeleitet durch das Lernen von Einsichten aus diesen
Datensätzen zu verbessern. In der Regel wird der Bereich der Process Mining
strukturiert durch die Kategorisierung seiner Analyseaufgaben in einer Taxono-
mie die drei große Aufgabentypen enthält: Prozesserkennung, Konformitätsprü-
fung und Prozess-Verbesserung.

Obwohl große Fortschritte im Bereich der Process Mining zur Verbesserung der
Geschäftsprozesse und daraus Erkenntnisse aus historischen Ereignis-basierte
Daten-Repositories gemacht sind, steht das Feld vor einigen bemerkenswerten
Schwierigkeiten. Eine besondere Schwierigkeit ist, daß Process Mining, mit Pro-
zess Entdeckung insbesondere häu�g auf die Einstellung des unüberwachten
Lernens beschränkt wird, da negative Informationen (dh Ereignisse, die statt-
�ndet verhindert wurden) oft im realen Ereignisprotokolle verfügbar sind. Meh-
rere Lösungen sind vorgeschlagen worden, diesen Aspekt zu beheben, mit einem
von ihnen umfasst die künstliche Induktion von negativen Ereignissen auf der
Grundlage verfügbarer, positive Informationen. Dieses Konzept ist zukunfts als
Themenschwerpunkt in der gesamten ersten Teil dieser Arbeit. Wir skizzieren
eine verbesserte künstliche negatives Ereignis-Generator und anschließend ver-
bessern diese Technik mit einem Scoring-Mechanismus, um ein Maß an Vertrau-
en induzierten negativen Ereignissen zuzuweisen. Weiter zeigen wir, wie die in-
duzierten negativen Ereignisse in einer Konformitätsprüfung Einstellung ange-
wendet werden, da sie es uns ermöglichen, einen voller Konformitätskontrollrah-

xxvi GERMAN SUMMARY

men zu entwicklen, in Übereinstimmung mit der üblichen Praxis des maschinel-
len Lernens, so dass Recall, Präzision und Verallgemeinerung eines Prozessmo-
dells beurteilt worden kann. Schließlich zeigen wir auch, wie künstliche negative
Ereignisse angewendet werden, um Probleme bei der Umsetzung, indem sie als
Zeiger unbeobachtet Verhalten angewendet werden.

Der zweite Teil der Arbeit beschreibt eine Reihe von Zusatzbeiträge, die nicht di-
rekt auf den Begri� der künstlichen negativen Ereignissen verbunden sind. Ins-
besondere wird eine neue heuristische Verfahrens Entdeckungstechnik vorge-
stellt, die basiert ist auf einer langen Linie von verwandten Prozesserkennungs-
algorithmen, aber mit einem besonderen Fokus auf Robustheit und Flexibilität.
Weiter, auf der in der gesamten ersten Teil der Arbeit entwickelte Replay Stra-
tegien basiert, wird ein Ereignis-Konformität granulare Analyse-Technik vorge-
stellt, die auf die Ermöglichung Echtzeit-Überwachung von Geschäftsaktivitäten
angewendet werden können. Als nächstes wird ein Verfahren zum Erläutern Er-
eignisprotokoll Cluster-Lösungen auf einer Instanz-granulare Ebene dargestellt.
Schließlich wurde ein Benchmarking-Rahmen entwickelt, um den automatisier-
ten Aufbau von massenhaften Konformität Ana-lyse-Experimente zu ermögli-
chen.

xxvii

中文摘要

流程挖掘(“Process mining”)是一个以事件日志的知识发现为探索重点的研
究领域。信息系统记录和存储了大量的事件日志用以支持、模拟和管理操

作流程。尽管事件日志能够记录成万上亿的事件，但是组织机构要从如此

大的数据资料库中获取价值确实是一个挑战。因此，我们需要对这些数据

集进行观察、学习和研究，用以提高和优化业务流程。通常，流程挖掘

的研究领域以它对任务分析的分类为依据进行划分，概括为三大类：流

程发现(“process discovery”)、一致性检验(“conformance checking”)和流程改
进(“process enhancement”)。

尽管流程挖掘在提高业务流程和基于历史日志的数据资料库的研究方面取

得了巨大进步，但是仍然面临着一些重大的难题。难题之一，由于负面信

息通常在真实的事件日志中不可用，使得流程发现的研究通常局限在非监

督学习的情境下进行。为了解决这个问题，研究者提出了多种解决方案，

一种是根据可用的正面信息，围绕人工引变负面事件的方法开展。人工负

面事件(“arti�cial negative events”)这个概念作为本研究的主题之一贯穿于论
文的第一部分。论文的第一部分首先提出了一种优化的人工负面事件生成

器，并且利用评分机制对引变的负面事件进行信心测度的方法来提高这项

技术。接下来，这部分展示了引变的人工负面事件如何应用在一致性检验

的情境中。它们允许按照标准的机器学习实践方法构建一个全面的一致性

检验框架，从而来评价一个流程模型的恢复召回率、精密和一般化。最

后，这部分堪称类比人工负面事件为揭未被察觉行为的荧光笔，展示如何

应用它们来揭示信息系统实现的有关问题。

论文的第二部分概述了与概念人工负面事件没有直接关联的其他几项成

果。首当其冲的是提出了一种全新的启发式流程发现技术。这项技术与的

相关的流程发现算法一脉相承，但主要集中在稳健性和灵活性方面。其

次，基于论文第一部分的回放的手段(“replay strategies”)，提出了一种事件
粒度层的一致性分析技术。这项技术能够用于激活业务活动的实时监控。

xxviii CHINESE SUMMARY

再次，在实例粒度层次上，提出了一种解释事件日志集群解决方案的技

术。最后，提出了一种能够为开展大规模一致性分析实验进行自动构建的

基准框架。

xxix

Sommaire Français

L’exploration des processus (process mining) est le domaine de recherche dédié
à la découverte de connaissance à partir de journaux d’événements (event logs),
qui sont enregistrés et stockés par une multitude de systèmes d’information, et
sont utilisés pour soutenir, modéler et gouverner les processus opérationnels.
Les journaux d’événements peuvent contenir jusqu’à des millions d’événements,
de ce fait les organisations sont ainsi confrontés au dé� d’extraire des valeurs
de ce vaste entrepôt de données, a�n d’améliorer leurs processus d’a�aires par
l’apprentissage de connaissances issues de ces ensembles de données. En règle
générale, le domaine du forage des processus est structuré en classant ses tâches
d’analyse selont une taxonomie contenant trois types généraux : la découverte
des processus, la véri�cation de la conformité, et l’amélioration des processus.

Bien que de grands progrès ont été réalisés à l’aide de l’exploration des proces-
sus dans l’amélioration des processus d’a�aires et dans la dérivation d’un savoir
à partir de l’historique des référentiels de données basées sur des événements,
le domaine est confrontée à des di�cultés notables. Une di�culté particulière
est que l’extraction de processus, avec le processus de découverte en particu-
lier, est souvent limitée à la création de l’apprentissage non supervisé, comme
l’information négative (c.à.d.des événements qui ont été empêchés d’avoir lieu)
sont souvent indisponibles dans les journaux d’événements issus de la vie réelle.
De multiples solutions ont été proposées pour résoudre ce problème, avec l’un
d’eux entourant l’induction arti�cielle d’événements négatifs en fonction de la
disposition, positive, des informations. Ce concept est présenté comme le sujet
de discussion tout au long de la première partie de cette thèse. Nous présentons
une amélioration arti�cielle générateur d’événements négatifs, puis améliorons
cette technique avec un mécanisme de notation a�n d’attribuer une mesure de
con�ance pour les événements négatifs induits. Ensuite, nous montrons com-
ment les événements négatifs induits peuvent être appliqués dans un cadre de

xxx FRENCH SUMMARY

contrôle de conformité, car ils nous permettent de développer un cadre de con-
trôle de conformité complet en ligne avec les pratiques d’apprentissage de la
machine standard, a�n d’évaluer le rappel, la précision et la généralisation d’un
modèle de processus. En�n, nous montrons aussi comment les événements néga-
tifs arti�ciels peuvent être appliqués à découvrir les problèmes de mise en œuvre
en les utilisant comme des indicateurs de comportement observé.

La deuxième partie de cette thèse présente un certain nombre de contributions
supplémentaires qui ne sont pas directement liées à la notion d’événements né-
gatifs arti�ciels. En particulier, une technique inédite de découverte de processus
heuristiques est présentée, basée sur une longue série d’algorithmes de décou-
verte de processus connexes, mais avec un accent particulier sur la robustesse et
la �exibilité. Ensuite, sur base de stratégies de relecture développés tout au long
de la première partie de la thèse, une technique d’analyse de conformité événe-
ment granulaire est présentée qui peut être appliquée en vue de permettre un
suivi en temps réel des activités de l’entreprise. Ensuite, une technique pour ex-
pliquer les solutions de regroupement (clustering) du journal des événements au
niveau de l’instance granulaire est présentée. En�n, un cadre de référence a été
développé pour permettre la mise en place automatique d’expériences d’analyse
de conformité en masse.

xxxi

Outline

“In the beginner’s mind there are many possibilities,
but in the expert’s there are few.”

– Shunryu Suzuki

This dissertation is divided into two parts. Part I outlines an e�cient weighted ar-
ti�cial negative event generation technique together with a conformance check-
ing framework wherein such events are applied to assess the quality of a process
model. Part II presents contributions which are not directly related to the concept
of arti�cial negative events.

The following outline provides a summary of the works presented in this disser-
tation.

Part I – Arti�cial Negative Event Based Techniques for Business
Process Conformance Checking

Chapter 1 – Introduction

This chapter provides a thorough introduction on process mining and out-
lines the research background and context.

Background information and related work on the concept of arti�cial neg-
ative events is given.

Preliminaries and notations used throughout the rest of the dissertation
are also provided.

xxxii OUTLINE

The work presented in this chapter has been published in:

Dejaeger, K., vanden Broucke, S., Eerola, T., Wehkamp, R., Goedhuys, L.,
Riis, M., Baesens, B. (2012). Beyond the hype: cloud computing in analytics.
Data Insight & Social BI: Executive Update, Cutter Consortium.

vanden Broucke, S., Baesens, B., Vanthienen, J. (2013). Closing the loop:
state of the art in business process analytics. Data Insight & Social BI:
Executive Update, Cutter Consortium.

Baesens, B. (2014). Chapter: “Business Process Analytics”, vanden Broucke
S. in: Analytics in A Big Data World: The Essential Guide to Data Science
and its Applications. Wiley, June 2014.

Chapter 2 – An Improved Arti�cial Negative Event Induction Technique

This chapter presents an improved arti�cial negative event induction tech-
nique, extending earlier approaches [1–3].

The developed technique is a �rst step towards enabling the generation of
a complete and correct arti�cial negative events in a robust manner and is
better able to deal with the problem of event log incompleteness.

The work presented in this chapter has been published in:

vanden Broucke, S., De Weerdt, J., Vanthienen, J., Baesens, B. (2012). An
improved process event log arti�cial negative event generator. FEB Re-
search Report KBI_1216. Leuven (Belgium): KU Leuven - Faculty of Eco-
nomics and Business.

vanden Broucke, S., De Weerdt, J., Baesens, B., Vanthienen, J. (2012). An
improved arti�cial negative event generator to enhance process event logs.
In Lecture Notes in Computer Science. International Conference on Ad-
vanced Information Systems Engineering (CAiSE’12). Gdansk (Poland),
25-29 June 2012 (pp. 254-269) Springer.

OUTLINE xxxiii

Chapter 3 – Determining Process Model Precision and Generalization with
Weighted Arti�cial Negative Events

This chapter introduces the concept of weighted arti�cial negative events.

The generation technique presented in the previous chapter is extended
and optimized for use in a conformance checking context.

An empirical evaluation shows the validity of the scoring metric used to-
wards assigning a weighting to arti�cial negative events.

Based on the concept of weighted arti�cial negative events, a comprehen-
sive conformance checking framework is presented, which is able to assess
the recall, precision and generalization quality dimensions of process mod-
els in a robust, integrated, and scalable manner.

We develop a series of replay strategies and negative event evaluation
methods to implement the conformance checking framework.

We present a benchmarking study to compare our developed metrics and
techniques with other conformance checking approaches.

The work presented in this chapter has been published in:

vanden Broucke, S., De Weerdt, J., Vanthienen, J., Baesens, B. (2013). Deter-
mining process model precision and generalization with weighted arti�cial
negative events. IEEE Transactions on Knowledge and Data Engineering.

vanden Broucke, S., De Weerdt, J., Vanthienen, J., Baesens, B. (2013). On re-
playing process execution traces containing positive and negative events.
FEB Research Report KBI_1311. Leuven (Belgium): KU Leuven - Faculty
of Economics and Business.

Chapter 4 – Arti�cial Negative Events as Unobserved Events

The �nal chapter in this part applies the concept of arti�cial negative
events as a detection mechanism for unobserved behavior.

We show how this can help to highlight implementation problems, both
for procedural and declarative process models.

xxxiv OUTLINE

This idea forms the basis of a more comprehensive event existence classi-
�cation framework.

The work presented in this chapter has been published in:

Caron, F., vanden Broucke, S., Vanthienen, J., Baesens, B. (2012). On
the distinction between truthful, invisible, false and unobserved events.
Sprouts: Working Papers on Information Systems: vol. 12 (16). 11th JAIS
Theory Development Workshop at ICIS 2012. Orlando, Florida, 16 Decem-
ber 2012.

Caron, F., vanden Broucke, S., Vanthienen, J., Baesens, B. (2012). On the
distinction between truthful, invisible, false and unobserved events. Pro-
ceedings of the 18th Americas Conference on Information Systems (ACIS
2012): Vol. e-pub. Americas Conference on Information Systems. Seattle,
Washington (US), 9-12 August 2012 (art.nr. 24) Association for Information
Systems.

vanden Broucke, S., Caron, F., Vanthienen, J., Baesens, B. (2013). Validat-
ing and enhancing declarative business process models based on allowed
and non-occurring past behavior. Business Process Management Work-
shops. Workshop on Decision Mining & Modeling for Business Processes
(DeMiMoP’13). Beijing (China), 26-30 August 2013.

vanden Broucke, S., Caron, F., Lismont, J., Vanthienen, J., Baesens, B.
(2014). On the Gap between Reality and Registration: A Business Event
Analysis Classi�cation Framework, in submission (Journal of Information
Technology & Management, Springer).

Part II – Other Advances in Process Mining

Chapter 5 – Fodina: Robust and Flexible Heuristic Process Discovery

A novel heuristic process discovery technique, called Fodina, is presented.

The technique is based on a long lineage of related process discovery al-
gorithms, but with a particular focus on robustness and �exibility.

The technique is able to discover the construct of duplicate activities.

OUTLINE xxxv

A benchmarking study con�rms the robustness and scalability of the tech-
nique for both synthetic and real-life event logs.

The work presented in this chapter has been published in:

vanden Broucke, S., De Weerdt, J., Vanthienen J., Baesens, B. (2014). Fod-
ina: a Robust and Flexible Heuristic Process Discovery Technique, in sub-
mission (Information Systems, Elsevier).

De Weerdt, J., vanden Broucke, S., Caron, F. (2014). Bidimensional Pro-
cess Discovery for Mining BPMN Models. Workshop on Decision Min-
ing & Modeling for Business Processes (DeMiMoP’14). Haifa (Israel), 7-11
September 2014, accepted.

Chapter 6 – Event-Granular Real-Time Decomposed Conformance Analysis

Based on the replay strategies developed throughout the �rst part of the
thesis, an event-granular conformance analysis technique is presented.

The technique can be applied towards enabling real-time monitoring of
business activities.

By applying the concept of process model decomposition, the technique is
able to localize deviations in a more precise and �ne-grained manner.

The technique can be ran in a distributed manner.

The work presented in this chapter has been published in:

vanden Broucke, S., Muñoz-Gama, J., Carmona, J., Baesens, B., Vanthienen,
J. (2013). Event-based real-time decomposed conformance analysis, 21
pp: Polytechnic University of Catalonia, Department of Information Lan-
guages and Systems.

vanden Broucke, S., Muñoz-Gama, J., Carmona, J., Baesens, B., Vanthienen,
J. (2014). Event-based real-time decomposed conformance analysis, 18 pp.
OnTheMove Federated Conferences & Workshops, CoopIS 2014 (CoopIS’14),
Amantea, Calabria (Italy), 27-31 October 2014.

xxxvi OUTLINE

Chapter 7 – Explaining Clustered Process Instances

This chapter presents SECPI (Search for Explanations for Clustered Process
Instances), a technique for explaining event log cluster solutions on an
instance-granular level.

The work presented in this chapter has been published in:

De Weerdt, J., vanden Broucke, S., Vanthienen, J., Baesens, B. (2014). Ex-
plaining Clustered Process Instances, Business Process Management Con-
ference 2014, Haifa (Israel), 7-11 September 2014.

Chapter 8 – A Conformance Analysis Benchmarking Framework

This chapter presented CoBeFra (the Comphrensive Benchmarking Frame-
work): a technique devoted to enable the automated set-up of mass-scale
conformance analysis experiments.

We present a developed Petri net based event log generation technique
which enables to rapidly construct a set of synthetic event logs for use
within experimental setups.

We present the results of a benchmarking study aiming to uncover the
relationship between process discovery techniques and event log charac-
teristics.

The work presented in this chapter has been published in:

vanden Broucke, S., De Weerdt, J., Vanthienen, J., Baesens, B. (2013).
A comprehensive benchmarking framework (CoBeFra) for conformance
analysis between procedural process models and event logs in ProM. Pro-
ceedings of the IEEE Symposium on Computational Intelligence and Data
Mining, CIDM 2013, SSCI 2013. Singapore, 16-19 April 2013.

vanden Broucke, S., Delvaux, C., Freitas, J., Rogova, T., Vanthienen, J., Bae-
sens, B. (2013). Uncovering the relationship between event log characteris-
tics and process discovery techniques. BPM Workshops (BPI2013). Beijing
(China), 26-30 August 2013.

OUTLINE xxxvii

vanden Broucke, S., Vanthienen, J., Baesens, B. (2014). Straightforward
Petri Net-based Event Log Generation in ProM. FEB Research Report, Leu-
ven (Belgium): KU Leuven - Faculty of Economics and Business.

xxxviii OUTLINE

1

Part I

Arti�cial Negative Event Based
Techniques for Business Process

Conformance Checking

3

Chapter 1

Introduction

“Things always become obvious after the fact.”
– Nassim Nicholas Taleb

This chapter provides introductory background material regarding process min-
ing, as well as providing preliminary notations and de�nitions. In addition, the
research context and background regarding the concept of arti�cial negative
events is introduced. This chapter can optionally be skipped by readers who
are already familiar with the �eld.

1.1 Process Mining

1.1.1 An Avalanche of Data

Many of today’s organizations are currently confronted with a true avalanche of
data. Especially concerning business processes, i.e. the area of interest in this
dissertation, an incredible amount of investments has been made throughout the
past decades, subsequently driving an incredible growth in the availability of
process-related data, i.e. operational transaction logs, execution traces of busi-
ness activities, and so on. Given this fact, it is without doubt that important op-
portunities arise for analysis of process-related data in order to provide insights

4 1.1. PROCESS MINING

into the actual way of working, monitoring business activities, detecting devi-
ations or improving performance criteria. However, performing such analysis
tasks is oftentimes easier said than done. Although information support systems
such as Enterprise Resource Planners (ERP) and modern Work�ow Management
Systems (WfMS) commonly provide analysis and visualization tools in order to
monitor and inspect processes—often based on key performance indicators—an
abundance of data about the way people conduct day-to-day practices still re-
mains untapped and concealed inside process-related data repositories.

The di�culty towards analyzing these data repositories stems from a number
of key characteristics. First, because of the nature of IT related evolutions, the
possibilities towards storing data are ever increasing (decreasing cost of stor-
age). This leads to the creation of vast data repositories, archived “for later use”,
which contain a wealth of potential knowledge-based value, but are impossible
to analyze in a manual manner. When enterprises succeed in applying advanced
analysis techniques on such data sets, the practice is frequently denoted as “big
data analytics”, whereas companies that don’t succeed in doing so face an “infor-
mation overload”. In short, big data sets require appropriate techniques. Second,
somewhat paradoxical, an increase in automation oftentimes causes an increase
in complexity. The problem stems from the fact that although automation and
information technology allow to integrate many departments across the organi-
zation (which manager hasn’t dreamed of the ultimate, encompassing work�ow
model?), it becomes harder and harder for analysts, process owners and other
stake holders to retain an overview of the overall process “inside their heads”,
that is, increasing automation comes with a complexity cost. The third and �nal
key di�culty is due to the “gaps” which exist between the design, implementa-
tion, and execution of business processes. The as-designed process model might
not be the one which end up being implemented in the innards of some infor-
mation system. Sometimes this is due to human error (a programming mistake),
due to the information system or tooling being used (your work�ow system uses
the X modeling language while your designers model with Y), or simply due to a
conscious decision (the designed model is more like a prescriptive guideline and
should not always be followed to the limit). Next, the as-implemented process
might not even be in correspondence with the as-executed process. Perhaps the
system allows to skip some tasks. Perhaps sometimes this is even desired, per-
haps some process instance had to be restarted, or prematurely canceled. Perhaps
there is still some three-year running instance open in the system. In summary,
there is a gap between the was-designed, as-is and to-be process.

CHAPTER 1. INTRODUCTION 5

Supports /
Controls

Event
Logs

Records
/ Stores

Process
Mining

Analysed By

Model /
Analyze

Improve /
Optimize

“World”:
organizations,

business partners,
regulations,

people, machines

Information
Systems

Figure 1.1: Process mining models and analyzes the (organizational) context in which
it is applied, supported and controlled by information systems, which process mining
hence tries to improve and optimize. To do so, process mining starts from process-related
data as stored in so-called event logs, which are recorded and stored by aforementioned
information systems. (Adapted from [4].)

1.1.2 Knowledge Discovery from Event Logs

The size of process-related data repositories, together with their increasing com-
plexity and the realization that there exists a gap between process model design,
implementation and execution has caused practitioners and scholars to realize
that strong, robust analysis techniques should be pursued to obtain valuable in-
sights regarding business processes. As such, throughout the past years, a re-
search �eld has sprung up which aims to extract knowledge discovery from event
logs; that is, process-related data sets [4]. The �eld is denoted as Process Mining
and is oftentimes situated at the intersection of the �elds of data mining [5, 6],
because of the shared goal of learning from data repositories and the �eld of Busi-
ness Process Management (BPM), as its major objective entails gaining insight
into business operations, so that process mining �ts within the diagnosis phase of
the BPM life cycle [7]. Figure 1.1 shows the typical, well-known schematic which
situates process mining in its organizational context. Process mining models and
analyzes this context, which is supported and controlled by various sorts of in-
formation systems. As such another aim of process mining is to improve and
optimize these information systems. To do so, process mining techniques starts
from process-related data as stored in so-called event logs, which are recorded
and stored by aforementioned information systems.

Typically, the �eld of process mining has been structured by categorizing all
analysis tasks and techniques into a taxonomy containing three broad task types

6 1.1. PROCESS MINING

Process
Discovery

Conformance
Checking

Process
Enhancement

Figure 1.2: Process mining task are frequently categorized into three broad types: process
discovery, conformance checking and process enhancement.

(see Figure 1.2). The �rst task type, denoted as process discovery, deals with the
construction of a process model out of an event log. In most cases, no a-priori
model or knowledge is assumed, although some—though few—techniques are
able to take into account domain-knowledge to derive models as well. This task
type kick started the �eld of process mining around a decade ago and has as
such received the most attention in the research community (in some cases or
sources, the term process mining is used interchangeably albeit confusingly with
process discovery). In most cases, the model being discovered is represented in
a well-known process modeling language, such as BPMN or other procedural-
oriented notations like Petri nets, but depending on the log perspective being
investigated and the goals of the analysts, other models, such as social networks
or declarative models, can be extracted as well. The second task type, called
conformance checking (or: conformance analysis) starts from an event log and
a process model and analyzes the quality of the process model based in terms
of its ability to represent the behavior captured in the event log (how well is
the model able to represent reality) or, alternatively, attempts to explain where
deviations have occurred during the execution of the process (where did reality
violate or deviate from the prescribed model). The last task, process enhancement
(or: process extension), also assumes the presence of an existing process model
and tries to improve, enrich or extend this model based on additional or more
recent data. In many cases, “traditional” data mining practices also �nd their
way in many of the analysis tasks process mining encompasses, for example
to uncover the root-causes behind deviations in the form of a decision tree, or
to build predictive models to estimate how much time a process instance will
consume before completion, for instance.

CHAPTER 1. INTRODUCTION 7

1.1.3 The Event Log as the Center Point of Analysis

As mentioned before, the starting point for each process mining analysis task is
a so-called event log, a repository of process-related data, transactional records,
or traces of operational behavior. Most process mining techniques can be applied
on any sort of event log, but a basic number of requirements must be met. That
is, at the very least, entries in the event log (i.e. the actual events) should contain:

A case identi�er, or instance identi�er, which serves to group multiple
events together, indicating that they relate to the same process instance,
the same case.

Events must be labeled. That is, they must carry some name. In most
cases, events are labeled according to the activity they represent, for in-
stance “sign contract”. Typically, these labels will be used to �ll in the
activity “boxes” in a discovered process model. A common “trick of the
trade” which is used in practice is to vary the manner by which events are
labeled. For instance, a “handover-of-work” network can be derived by us-
ing the department who has executed a speci�c activity as the label, rather
than the actual activity name itself.

Finally, events must exhibit a form of ordering. In the most optimal case, all
the events in the event log contain a starting and ending timestamp denot-
ing the exact point in time the event was started and completed, allowing
to order all events and all process instances. In most real-life event logs,
however, only one atomic timestamp is provided for each event. When
no absolute timestamp information is available, techniques are also able
to work with relative ordered events (a sequential row number can suf-
�ce), either over the whole event log or only for the events in each process
instance (this was the �rst event in the instance, followed by the second,
etc.). In the last case, it is not possible to establish an ordering between pro-
cess instances, but this can still serve as su�cient input for many process
mining techniques.

An important aspect to note is that the requirements of a case identi�er and an
ordering cause an event log are di�erent from a normal table-based, �at data
set as used in “traditional” machine learning. That is, an event log works on
two levels of aggregation: events, and a grouping of events (a process instance,

8 1.1. PROCESS MINING

also frequently denoted as a trace of execution). Second, there exist a temporal
relationship between events.

Apart from these three basic requirements, event logs can contain a wealth of
additional attributes, which can be of help during the execution of process dis-
covery, conformance checking or process enhancement tasks. In fact, when event
log provides a rich source of data, analysts can decide upon various log perspec-
tives to adopt to drive the execution of a process mining technique. We already
hinted at using the department as an activity label, thus changing the control-
�ow perspective to a social, organizational one, but other perspectives can be
adopted as well, such as:

Control-�ow/activity perspective: focuses on the activities and their or-
dering of activities in the event log, i.e. the �ow of execution between
them. This is the most common perspective.

Social/organizational/resource perspective: focuses on the people, em-
ployees, or departments who perform the activities.

Time/performance perspective: this perspective focuses on the time and
performance aspect, for instance to uncover bottlenecks in the process,
activities which were cycled or repeated many times or activities which,
on average, take a long time to complete.

Exception perspective: focuses speci�cally on problems and failures: e.g.
prematurely ended traces, noise, missing data, and so on.

Case data perspective: all other extra data elements and attributes that
might be available in the event log, either relating to a speci�c event, a
trace, or the event log as a whole.

It should be said that there exists some overlap between the various perspectives.
For instance, when the goal is to detect long-running activities in the context of
service level agreement (SLA) violations, this can be regarded as �tting in either
the time or exception perspectives. The event log perspective taxonomy is not as
strict as the three categories of process mining techniques (various sources also
drop some perspectives or name them di�erently), but an important remark to
make is the orthogonal nature amongst these two categories. That is, within the
�eld, it is common practice to pinpoint a speci�c technique or class of techniques
by describing both the process mining analysis task is relates to and the event log

CHAPTER 1. INTRODUCTION 9

perspective it focuses on. Process discovery combined with the control-�ow per-
spective, for instance, leads to a set of discovery techniques which aim to discover
a Petri net model, for example (this has been the most popular task-perspective
pair in the �eld so far). Conformance checking combined with control-�ow then
leads to replay or alignment techniques. Process discovery combined with the
social perspective leads to social network discovery. Process enhancement with
the time or performance perspective leads to visual annotation techniques where
parts of the process model are highlighted based on how much they constrain the
overall e�ciency, and so on. It is not always straightforward to place a speci�c
technique in this matrix, and in many cases, various techniques are combined
and mixed and matched to reach the objective of the analysis.

1.1.4 Crossing Boundaries

1.1.4.1 Process Mining and Business Process Management

Earlier on, we have stated that process mining is situated between the bound-
aries of BPM and traditional data mining. Figure 1.3 (adapted from [8]) provides
a schematic overview on how process mining aims to bridge the gap between
existing process related and data oriented techniques to enable performance and
compliance oriented analysis exercises.

As process mining concerns itself with improving business processes, the overlap
with BPM is relatively obvious. BPM entails the holistic management approach
including concepts, methods and techniques to support the design, con�gura-
tion, enactment, and analysis of business processes [7]. Without doubt, one of
the main parts of BPM encompasses process modeling, which refers to the iden-
ti�cation, speci�cation, and structured design of business processes. Important
phases can be identi�ed in the life cycle of a business process, such as design,
modeling, implementation, execution and diagnosis [7], see Figure 1.4. Conse-
quently, process mining �ts neatly in the “diagnosis/optimization”-phase of the
BPM life cycle. While traditional approaches start out by planning, designing and
modeling a process, process mining starts from the processes that are already in
place, i.e. from recorded data.

10 1.1. PROCESS MINING

Process
Mining

Performance Oriented
Analysis

(Questions, problems, solutions…)

Compliance Oriented
Analysis
(Questions, problems, solutions…)

Process Related Techniques
Simulation – verification – optimization…

Data Oriented Techniques
Data mining, analytics, machine learning, business intelligence…

Figure 1.3: Process mining on the boundary between process related and data oriented
techniques: connecting BPM, simulation, operations research, data mining, and others.
(Figure adapted from [8].)

1.1.4.2 Process Mining and Quality Management

BPM is oftentimes described as a “process optimization methodology” and hence
mentioned together with related quality control terms such as Total Quality Man-
agement (TQM), Six Sigma, or Continuous Process Improvement (CPI) method-
ologies [9–12]. However, this description is somewhat lacking. Indeed, one sig-
ni�cant focal point of BPM is the actual improvement and optimization of pro-
cesses, but the concept also encompasses best practices towards the design and
modeling of business processes, monitoring (consider for instance compliance
requirements), and gaining insights by unleashing analytical tools on recorded
business activities.

The same holds when comparing process mining with existing quality manage-
ment related approaches. Process mining can help as an environment-agnostic
tool to aid in the reduction of costs and the improvement of quality. Some key dif-
ferences exist between process mining techniques and existing quality manage-
ment techniques. Process mining techniques do not assume an a-priori model,
whereas many traditional quality control techniques do assume that there exists
at least some version of a model to start from. Second, in many quality manage-
ment techniques, the “activity is the process”. That is, oftentimes, the focal point

CHAPTER 1. INTRODUCTION 11

Planning /

(Re-)Design

Modeling

Implementation

Execution

Monitoring

Diagnosis /

Optimization

Figure 1.4: The BPM life cycle [7].

of analysis when using statistical process control (SPC) techniques corresponds
with a single activity in the encompassing business chain, whereas process min-
ing techniques are able to consider the complete business process as a whole.

1.1.4.3 Process Mining and Business (Process) Intelligence

Just as process mining �ts neatly within the diagnosis phase of the BPM life cy-
cle, other domains, such as business (process) intelligence or analytics (BI/BA)
also �t in this phase. “Process intelligence” has evolved into a very broad term
encompassing a multitude of tools and techniques, and hence nowadays can
include anything that provides information to support decision-making [13–
18]. As such, in similar fashion as occurred with traditional (“�at”, or tabular)
data oriented tools, many vendors and consultants have de�ned process intelli-
gence to be synonymous with process-aware query and reporting tools, often-
times combined with straightforward visualizations in order to present aggre-
gated overviews on business actions. In many cases, a particular system will
present itself as being a helpful tool towards process evaluation by providing
key performance indicator (KPI) dashboards and scorecards, thus presenting a
“health report” for a particular business process. In some cases, such tools are
presented as monitoring and improvement tools as well (as such covering an-
other phase in the BPM lifecycle), especially when they come equipped with real-
time capabilities, compared to batch reporting where the gathering and prepara-
tion of reports follows after the actual process execution. Many process-aware

12 1.1. PROCESS MINING

information support systems also provide online analytical processing (OLAP)
tools to view multidimensional data from di�erent angles and to drill down into
detailed information. Another term which has become commonplace in a process
intelligence context is business activity monitoring (BAM), which refers to real-
time monitoring of business processes, thus related to the real-time dashboards
mentioned above, but oftentimes also reacting immediately if a process displays a
particular pattern. Corporate performance management (CPM) or business oper-
ations management (BOM) are other buzzwords for measuring the performance
of a process or the organization as a whole.

Many of the tools and three-letter acronym techniques mentioned above have
to deal with similar challenges as process mining has to deal with when ana-
lyzing processes, e.g. collecting data and preparing it for use. Although they
all provide valid ways to measure and query many aspects of a business’ activ-
ities, most tools unfortunately su�er from the problem that they are unable to
provide real insights or uncover meaningful, newly emerging patterns. Just as
for non-process related data sets, although reporting, querying, inspecting dash-
board indicators, aggregating, slicing, dicing and drilling are all perfectly valid
and reasonable tools for operational day-to-day management, they all have lit-
tle to do with real process analytics—the emphasis being placed on “analytics”.
The main issue lies in the fact that such tools inherently assume that users and
analysts already know what to look for, as writing queries to derive indicators
assumes that one already knows these indicators of interest. As such, patterns
that can only be detected by applying real analytical approaches remain hidden.
For instance, a KPI dashboard is able to provide feedback regarding some impor-
tant statistic or metric, but does not show how the actual process is working,
comparable to a doctor saying that a patient’s organ is ill, without being able to
diagnose the actual illness—and, hence, provide a cure. Whenever a report or
indicator does signal a problem, users often face the issue of then having to go
on a scavenger hunt in order to pinpoint the real root cause behind the problem,
working all the way down starting from a high-level aggregation towards the
source data. In those cases, process mining is a complementary tool that allows
to analyze the processes and �nd out the root causes of problems, or analyze
processes in an exploratory, open-minded manner.

1.1.4.4 Process Mining and Data Mining

The �eld of process mining also strongly relates to that of data mining (also
called: data analytics, business analytics, machine learning, knowledge discovery

CHAPTER 1. INTRODUCTION 13

in databases). The latter is often de�ned as the non-trivial process of identifying
valid, novel, useful, and understandable, explainable patterns in data [5, 6, 19–
28]. Data mining is older than process mining, but rarely focuses on processes.
The main di�erence lies in the fact that traditional data mining techniques focus
on “�at”, data sets, whereas an event log works on two levels of aggregation:
events and traces. As such, a gap exists between these two categories of tools,
causing di�culties when �ltering, exploring and analyzing event based data sets.
For example, since event logs are often handled as a large data table (i.e. a listing
of events), it is di�cult to derive statistical information at the trace level (i.e. a
grouping of events) rather than at the event level. Filtering out events based on
complex control-�ow based criteria is even more challenging. Vice versa, tools
which are speci�cally geared towards the analysis of process based data are often
lacking in terms of �ltering or descriptive statistics features.

Due to the mismatch described above, practitioners and researchers currently of-
ten �nd themselves using an abundance of tools to perform their analysis tasks.
Many possibilities exist to combine the two areas, as they are largely complemen-
tary, and indeed we can observe an increase in research attention being devoted
to develop techniques which combine the two [1, 29–32].

A note can be made here regarding the aspect of “big data”—i.e. the challenge of
extracting value out of gigantic data repositories. At �rst sight, process mining
does not really seem to concern itself about big data, as most big data examples
are unstructured and truly enormous, while most process mining techniques do
not assume terabytes of data. On the other hand, throughout the last years, we
have observed an increase in process-related data, which can all be used in pro-
cess mining exercises. That said, many process mining techniques are not quite
yet ready for “prime time” concerning the analysis of large data sets. Both the de-
velopment of scalable techniques and the development of approach which can be
ran in a parallel manner remains one of the bigger challenges in process mining
today.

1.1.4.5 Process Mining and Simulation

In a nutshell, process mining generally aims to generate models in order to un-
derstand the current as-is behavior, whereas simulation techniques try to predict
future behavior based on provided models. In that manner, one can say that pro-
cess mining is, in fact, the opposite or counterpart of simulation. Simulation

14 1.2. PRELIMINARIES

can nonetheless greatly bene�t from process mining as the latter can be used as
a tool to deliver the parameters needed to con�gure a simulation model (execu-
tion times, waiting times, utilization levels, distribution of arriving cases, or even
a complete control-�ow model) based on real-life information. This way, process
mining can help to build more accurate and better simulation models [33–37].

1.2 Preliminaries

This section provides preliminary de�nitions which will be applied throughout
the remainder of this dissertation, as well as an overview regarding the current
state of the art on process discovery and conformance checking techniques.

1.2.1 De�nitions

1.2.1.1 Event Logs

An event log consists of events that pertain to process instances: executions of
a process in a system. In order to obtain a usable event log, it is assumed that
it is possible to record events so that each event is labeled, the event refers to a
process instance and that the events are ordered, either based on a time stamp
or on the basis of relative ordering (a sequence number).

De�nition 1.1. Event. An event is de�ned as a tuple e = (c, t,a1, . . . ,an) with
c the case identi�er, t the timestamp and a1, . . . ,an an arbitrary number of addi-
tional attributes. 2

Next, we need to establish a way to assign labels to events. We do so through the
concept of a classi�er function.

De�nition 1.2. Classi�er. A classi�er is a labeling function which maps an
event to an unambiguous label, i.e. a hash derived from one or more attributes
of the event. 2

In most cases, events are classi�ed simply based on the “activity” attribute (a text
�eld describing which activity was performed). We can thus de�ne the following
functions: Case : e 7→ c returns the case identi�er of an event, Label : e 7→ l

CHAPTER 1. INTRODUCTION 15

returns the label for an event (this is the classi�er) and Time : e 7→ t returns the
timestamp of an event.

When activities in a process consume some amount of time (i.e. they are not
atomic), multiple ways exist to encode this as an event or a set of events. In
some cases, the ending time is encoded directly in the event itself, i.e. e =

(1, ”check documents”, 5, 7). An alternative method is to regard an event as
an encoding of a state change of an activity, thus leading to a start event
es = (1, ”check documents”, 5, ”started”) and a completion event ee = (1,
”check documents”, 7, ”completed”). The latter is useful when more than two
state changes (i.e. cancellation, restart) need to be logged1.

De�nition 1.3. Trace. A trace σ is a �nite sequence of events σ = 〈σ1, . . . ,σ|σ|〉
with |σ| the length/size of the trace and σi ∈ σ the event at position i in trace σ.
It holds that ∀σi,σj ∈ σ, i < j : [Time(σi) < Time(σj)∧Case(σi) = Case(σj)],
i.e. the trace is ordered and a grouping of events based on the case identi�er. 2

Finally, an event log can be de�ned as a grouping of traces.

De�nition 1.4. Event log. An event log L is de�ned as a multiset of traces,
with |L| the cardinality/size of an event log, denoting the total number of traces
in the log. It holds that ∀σ ∈ L : [@τ ∈ L,τ 6= σ : [Case(σ) = Case(τ)]]. 2

Note the use of function Case : σ 7→ Case(σ1) returning the case identi�er of
the �rst event in the trace, and thus by de�nition of the whole trace (all events
in the trace). Similarly, we de�ne Time : σ 7→ Time(σ1) and Label : σ 7→

〈Label(σi), . . . ,Label(σ|σ|)〉. We remark that the latter notation will oftentimes
be used as a direct representation of a trace, leaving the case identi�er and exact
timestamps implicit. This leads to the de�nition of a simpli�ed event log.

De�nition 1.5. Simpli�ed event log. An event log L is de�ned as a multiset of
traces, with |L| the cardinality/size of an event log, denoting the total number of
traces in the log. A trace σ is a �nite sequence of labels 〈σ1, . . . ,σ|σ|〉, which will
also be referred to as “activities” or “events”. Two traces are equal, σ = τ ⇐⇒

1A note regarding the event classi�er (or labeling function): as we have indicated, in most cases,
the label, or: class, of an event is simply equal to the activity attribute of the event. In other cases, as
was also mentioned earlier, another attribute, such as the department having executed the activity is
used to classify events. In yet some other cases, the activity attribute together with the state change
(“start”, “complete”...) is used to classify events (to di�erentiate between events denoting the start
and completion of an activity respectively). In very rare cases, it can be interesting to also use the
case identi�er as an input to construct event classes. An in-depth discussion of why and where this
is useful is out of scope of this discussion.

16 1.2. PRELIMINARIES

|σ| = |τ| ∧ ∀i ∈ {1, . . . , |σ|} : [σi = τi]. Two event logs are equal, L1 = L2 ⇐⇒

∀σ ∈ L1 ∪ L2 : [|{τ ∈ L1|σ = τ}| = |{τ ∈ L2|σ = τ}|]. The number of times a trace
appears in the simpli�ed event log L is then called the multiplicity of σ. 2

An example can help to illustrate this. Consider the event log L containing
a single trace σ = 〈start, register,participate,getResult,complete〉 with
start ∈ σ instead of writing ∃x ∈ σ : [Label(x) = start] and σi = start instead
of Label(σi) = start. Unless indicated otherwise, we will use the simpli�ed
event log as a formalization for event logs, traces and events throughout this dis-
sertation for the sake of brevity. Note that a non-simpli�ed event log can easily be
converted to a simpli�ed one based on any given labeling function Label : e 7→ l.

De�nition 1.6. Log alphabet. Let AL be the alphabet over an event log L, so
that AL = {σi ∈ σ|σ ∈ L}, i.e. the set of all event classes/labels appearing in the
event log. 2

For simpli�ed event logs, it is also a frequent practice to work with a “grouped
event log” or “distinct event log”, which is simply the set ot traces contained in
the event log rather than the multiset.

De�nition 1.7. Distinct event log. Let ⋃L be the distinct event log de�ned
over the simpli�ed event log L, i.e. the set {σ ∈ L}. |⋃L| is the distinct cardinality
or the number of unique traces (in terms of its sequence of event labels) in event
log L. 2

An example can help to illustrate this. Consider the event log L = {〈a,b,c,d〉3,
〈a,c,b,d〉2, 〈a,b,d〉4}. We use the labeling function to write down traces in a
direct manner. |L| = 3 + 2 + 4 = 9. ⋃L = {〈a,b,c,d〉, 〈a,c,b,d〉, 〈a,b,d〉} and
|
⋃
L| = 3. The multiplicity of 〈a,b,d〉 equals 4.

1.2.1.2 Process Models

Throughout this dissertation, Petri nets will frequently be applied as the repre-
sentational language for process models. Petri nets provide a graphical, formal
language to represent, analyze, verify and simulate dynamic behavior [38, 39]. A
Petri net is a directed bipartite graph, with nodes either representing transitions
or places.

CHAPTER 1. INTRODUCTION 17

De�nition 1.8. Petri net. A Petri net is a triple (P,T ,F) with: P a �nite set of
places; T a �nite set of transitions with (P∩ T = ∅);F ⊆ (P× T)∪ (T ×P) a �nite
set of directed arcs (�ow relation). 2

A place (drawn as a circle) p ∈ P is called an input/output place of a transition
(drawn as boxes) t ∈ T if there exists an arc from p to t or from t to p respectively.
•t, t•, denotes the set of input/output places for a transition t ∈ T . Similarly, •p,
p• de�ne the set of transitions having p ∈ P as an input/output place. That is,
let •x = {y|(y,x) ∈ F} and x• = {y|(x,y) ∈ F} with x,y ∈ P ∪ T .

De�nition 1.9. Marking, marked Petri net. A marked Petri net is a triple
(N,M,M0) with: N = (P,T ,F) a Petri net; M : P → N+

0 is a marking function;
M0 : P→ N+

0 is the initial marking function. 2

Places p ∈ P in a Petri net can contain zero or more “tokens” (drawn as black
dots). The distribution of tokens over the places de�nes the state, denoted as the
“marking” of the Petri net, i.e. the marking function M, which maps each p ∈ P
to a natural, positive number, representing the amount of tokens contained in
that place. The multiplicity of a place p in a marking M, i.e. M(p), denotes the
number of tokens that this place contains. The initial markingM0 initializing all
places with an initial token count.

De�nition 1.10. Petri net execution semantics. The number of tokens may
change during the execution of a Petri net. The marking of a Petri net de�nes a
state, based on which execution semantics can be de�ned. A transition t ∈ T is
said to be enabled under marking M i� each of its input places contains at least
one token, i.e. ∀p ∈ •t : [M(p) > 0]. An enabled transition t ∈ T can be �red,
which brings the net from one state to another: M1

t→M2 so that:

∀p ∈ P : [


M2(p) =M1(p) i� p /∈ •t∪ t•
M2(p) =M1(p) − 1 i� p ∈ •t
M2(p) =M1(p) + 1 i� p ∈ t•

]. 2

Scholars modeling control-�ow dimensions of a business process often utilize a
subclass of Petri nets, called WorkFlow nets (or, WF-nets) [40–42]. A WF-net
speci�es the behavior of a single process instance in isolation.

De�nition 1.11. WF-net. A Petri net (P,T,F) is a WF-net i�: there is a single
source place i ∈ P such that •i = ∅; there is a single sink place o ∈ P such that
o• = ∅; the net (P,T ∪ {t ′},F ∪ {(o, t ′), (t ′, i)}) is strongly connected, i.e. every
x ∈ P ∪ T lies on a path from i to o. 2

18 1.2. PRELIMINARIES

For conformance checking purposes, we need to establish the concept of trace
replay. First, a mapping between transitions in a Petri net and labels in an event
log need to be de�ned.

De�nition 1.12. Transition-activity mapping. Let µ : T 7→ AL ∪ {ai,ab} be
a function mapping transitions to either a label (thus: an activity in most cases)
contained in AL (the log alphabet of event log L), to an unobservable activity
ai, or to an inaccessible activity ab. Each label contained in AL can hence be
associated with one or more transitions. It follows that µ assigns a label to each
transition in a Petri net. Transitions mapped to ai are labeled as invisible (silent)
transitions (their �ring does not lead to an event). Multiple transitions which
are mapped to the same activity are duplicate transitions. Executing transitions
which are mapped to ab (a dummy activity outside those contained in AL) is
prohibited. 2

Based on the transition-activity mapping µ, it is possible to replay a trace σ on
a marked Petri net. The problem of trace replay can be summarized as follows:
given a certain trace σ, can a valid sequence of transitions be found in a Petri net
such that applying mapping µ on this sequence results in the same trace?

De�nition 1.13. Petri net trace replay. In a marked Petri net, enabled transi-
tions can be �red normally. When a transition is �red which is not enabled, we
say that the transition is force �red. Force �ring a transition t ∈ T consumes a
token from each of its input places pin ∈ •t where M(pin) > 0 and produces
a token in each of its output places pout ∈ t•. A �ring sequence fM0 ,(P,T ,F) is
a �nite sequence of transitions 〈t1, t2, . . . , tn〉 ∈ T , with M0 the initial marking
andMi (0 < i 6 n) the resulting marking after (force) �ring t1 up to and includ-
ing ti sequentially (the �ring sequence and Petri net are left implicit), i.e. under
M0

t1→ M1 . . .
tn→ Mn. A trace σ ∈ L can be replayed by the Petri net (P,T ,F) if

a �ring sequence fM0 ,(P,T ,F) can be found such that σi = µ(f
M0 ,(P,T ,F)∗
i) with

0 < i 6 |σ| and fM0 ,(P,T ,F)∗ = fM0 ,(P,T ,F) \ {t ∈ fM0 ,(P,T ,F)|µ(t) = ai}
2. 2

2Note that we use the \ operator here to subtract a set of elements (invisible transitions) from a
sequence. This operation can be formalized in the following manner. Let σ be a sequence de�ned as
a function f : N+ → D withD the domain, i.e. the set of elements which can be contained in the
sequence. Let R be a set of elements to be removed from the sequence. Then σ ′ = σ \ R is now
de�ned as 〈L(σ,R, i, 1)|i = 1, . . . |σ|〉 with L(σ,R, i, j) a recursive function (j ∈ N+):

L(σ,R, i, j) = ∅ if j > |σ|;
= L(σ,R, i, j+ 1) ifσj ∈ R;
= L(σ,R, i− 1, j+ 1) ifσj /∈ R∧ i > 1;
= σj otherwise.

CHAPTER 1. INTRODUCTION 19

Note that it is possible that multiple �ring sequences can be found to replay a
trace. When a �ring sequence can be found for a trace so that all transitions can
be �red sequentially starting from initial markingM0 without one of them being
forced to �re, it is said that the trace �ts in the Petri net. The question on how
exactly a �ring sequence can be constructed through a Petri net for a given trace
is left open for now. Various replay strategies can be constructed in order to do
so, but these will be discussed later on (in Chapter 3).

Second, there exists another common representational language to model dis-
covered process models, namely a Causal net (C-net) [43].

De�nition 1.14. Causal net. A Causal net can be expressed as a tuple CN =

(TC, ts, te, I,O) where TC is a �nite set of tasks modeled by the Causal net, I :

TC 7→ {X ⊆ P(TC)|X = {∅} ∨ ∅ /∈ X} de�nes the set of possible input bindings per
task (an input binding is a set of sets of activities) and O : TC 7→ {X ⊆ P(TC)|X =

{∅} ∨ ∅ /∈ X} de�nes the set of possible output bindings per task. Causal nets
must have a start task ts ∈ TC for which I(ts) = {∅} and one end task te ∈ TC
for which O(te) = {∅}. 2

De�nition 1.15. Dependency graph. For each task t ∈ TC,�t = ⋃
(I(t)) takes

the union of all subsets in I(t) and denotes the set of all input tasks, whereas t� =⋃
(O(t)) denotes the set of output tasks of t. Based on this, a dependency graph

(CN,D) can be de�ned as a relation on TC, with D the set of pairs: {(a,b)|a ∈
TC∧b ∈ TC∧ (a ∈ �b∨b ∈ a�)}. All tasks t ∈ TC in the graph (CN,D) should
lie on a path from the starting to the ending task. 2

The set of sets of tasks denoting the input and output bindings (I and O respec-
tively) are interpreted as a disjunction (between the sets of tasks) of conjunctions
(between the tasks within a set). The output bindings for each task create obliga-
tions whereas input bindings resolve obligations. A “binding sequence” models
an execution path through a Causal net starting and ending with the start and end
task respectively and while removing all obligations created during execution.
As an example, consider a task t with I(t) = {{a}, {b}} and O(t) = {{c,d}, {e}},
meaning that this activity can only be executed when it is preceded by a or
b (disjunction between sets), and that its execution creates the obligation that
the task should be followed with c and d (conjunction within sets), or just e .
Further details about the semantics of Causal nets can be found in [43]. Two
important remarks should be mentioned, however. First, note that the semantics
of Causal nets are non-local, as an output binding may create the obligation to
execute an activity much later in the process. In addition, in the case of an output

20 1.2. PRELIMINARIES

binding consisting of multiple sets of sets of tasks, it is not clear at the time of
executing the task at hand which of the possible conjunctive “and”-sets will be
resolved. As such, during execution, a state must be kept represented by mul-
tisets of pending obligations which still need to be resolved. Second, note that
some descriptions and implementations of heuristic, dependency-based process
discovery algorithms—such as Heuristics Miner [44]—derive models in a similar
representational language, i.e. a Heuristics net, but impose an inverted interpre-
tation on the input and output bindings, namely as a conjunction of disjunctions,
meaning that O(t) = {{c,d}, {e}} then denotes that t must be followed by e and
either c or d. The intricacies of this di�erence will be further discussed and elab-
orated later on (in Chapter 5).

1.2.2 State of the Art

To close the introductory preliminaries section, we provide a concise overview of
state of art regarding process discovery and conformance checking algorithms.

1.2.2.1 Process Discovery

Throughout the past decades, a plethora of process discovery technique have
been proposed and developed (see Table 1.1). One of the major drivers for schol-
ars and practitioners alike is the development of the ProM framework [45, 46],
which is a support toolkit developed at TU/Eindhoven and which allows for the
straightforward development of new process mining plugins. Generally speak-
ing, process discovery algorithms can be divided along two dimensions. First,
based on the approach they apply, and second, based on the structures they are
able to discover and typical problems they are able to deal with. Concerning the
approaches, we can identify the following items:

Early algorithmic approaches, e.g. Rnet, Ktail, Markov, General DAG, B-
F(k,c)-algorithm, Global partial orders, Process Miner, α-algorithm in Ta-
ble 1.1.
Most of these approaches are naive in the sense that they are not able to
deal with noisy event logs, incomplete event logs, or discover structural
aspects such as concurrency or loops.

CHAPTER 1. INTRODUCTION 21

Heuristic, dependency-based approaches, e.g. Heuristics Miner, Fuzzy Miner
in Table 1.1.
Most of these techniques have been proposed in the form of an improve-
ment of the substantial α-algorithm, for example to add the ability to deal
with noise, enable the discovery of short loops, non-free choice constructs
or duplicate tasks.

Genetic approaches, e.g. Genetic Miner, Process Tree Miner in Table 1.1.
Most of these techniques are robust to noise and able to discover a broad
range of constructs without falling into “local optima”, but they gener-
ally require a (very) high amount of computational time and scale badly in
terms of the input event log.

Machine learning-based approaches, e.g. ILP-based approach, AGNEsMiner
in Table 1.1.
These techniques apply machine learning techniques to discovery control
�ow.

Region-based approaches, e.g. FSM Miner-Petrify, FSM Miner-Genet, Con-
vex Polyhedra-approach in Table 1.1.
These techniques focus on the so-called synthesis problem: constructing
a process model from a description of its behavior, oftentimes represented
as a Transition System or a convex hull of Parikh vectors.

For more details, we refer to [4, 47].

22 1.2. PRELIMINARIES

Table 1.1: Overview of well-known existing process discovery algorithms.

Year Name Author(s)
1995 Rnet, Ktail, Markov Cook and Wolf [48, 49]
1998 General DAG Agrawal et al. [50]
1998 B-F(k,c)-algorithm Datta [51]
2000 Global partial orders Manilla and Meek [52]
2002 Process Miner Schimm [53, 54]
2003 α-algorithm van der Aalst et al. [55]
2003 Heuristics Miner (originally: Little Thumb) Weijters et al. [44, 56, 57]
2004 α+-algorithm van der Aalst et al. [58]
2004 InWoLvE Herbst and Karagiannis [59]
2005 Multi-phase Miner van Dongen and van der Aalst [60]
2005 Work�ow Miner Gaaloul et al. [61]
2006 DWS Mining Greco et al. [62]
2006 Rule-based approach Maruster et al. [63]
2006 ILP Miner Ferreira and Ferreira [64]
2007 Genetic Miner Alves de Medeiros et al. [65]
2007 DT Genetic Miner Alves de Medeiros et al. [66]
2007 Fuzzy Miner Günther and van der Aalst [67]
2007 α++-algorithm Wen et al. [68]
2007 DecMiner Lamma et al. [69]
2008 AWS Mining Greco et al. [70]
2008 Hidden Markov Model-approaches Various authors [48, 49, 71–73]
2009 AGNEsMiner Goedertier et al. [2]
2009 β-algorithm (or: Tsinghua α-algorithm) Wen et al. [74]
2009 Enhanced WFMiner Folino et al. [75]
2009 EM-approach Ferreira and Gill [76]
2009 ILP Miner van der Werf et al. [77]
2010 FSM Miner/Petrify van der Aalst et al. [78, 79]
2010 FSM Miner/Genet Carmona et al. [80]
2010 Convex Polyhedra-approach Carmona et al. [81]
2011 Declare Miner Maggi et al. [82, 83]
2010 Heuristics Miner++ Burattin and Sperduti [84, 85]
2010 Flexible Heuristics Miner Weijters and Ribeiro [86]
2012 Stream-aware Heuristics Miner Burattin and Sperduti [87]
2012 Process Log Tree Miner van der Aalst and Buijs [88]
2012 SMT Miner Solé and Carmona [89]
2013 Disco Günther and Rozinat [90]
2013 MinerFul++ Di Ciccio et al. [91]
2013 UnconstrainedMiner Westergaard et al. [92]
2014 Declarative genetic-approach vanden Broucke et al. [93]
2014 Inductive Miner Leemans et al. [94]
2014 Hybrid Miner Maggi et al. [95]
2014 ProDiGen Vázquez-Barreiros et al. [96]
2014 BPMN Miner Conforti et al. [97]
2014 Fodina vanden Broucke et al. (Chapter 5)
2014 Multi-Paradigm Miner De Smedt et al. [98]

CHAPTER 1. INTRODUCTION 23

1.2.2.2 Two Simple Process Discovery Algorithms

This section provides a brief description of two simple process discovery algo-
rithms. The �rst algorithm we describe is the α-algorithm [55]:

De�nition 1.16. α-algorithm. Input: an event log L. Output: a Petri net
(P,T ,F). A footprint of the event log is established as follows:

∀a,b ∈ AL : [∃σ ∈ L, i ∈ {1, . . . |σ|} : [σi = a∧ σi+1 = b]] ⇐⇒ a >L b

∀a,b ∈ AL : [a >L b∧ b 6>L a] ⇐⇒ a→L b

∀a,b ∈ AL : [a 6>L b∧ b 6>L a] ⇐⇒ a#Lb

∀a,b ∈ AL : [a >L b∧ b >L a] ⇐⇒ a||Lb

Next, we construct (P,T ,F) so that ∀a ∈ AL : [ta ∈ T], TI ⊆ T = {ta ∈ T |∃σ ∈

L : [σ1 = ta]}, TO ⊆ T = {ta ∈ T |∃σ ∈ L : [σ|σ| = ta]}; X = {(A,B)|A ⊆ T ∧A 6=

∅∧B 6= ∅∧ ∀a ∈ A,b ∈ B : [a→L b]∧ ∀a,b ∈ A : [a#Lb]∧ ∀a,b ∈ B : [a#Lb]};
Y = {(A,B) ∈ X|∀(A ′,B ′) ∈ X : [A ⊆ A ′ ∧ B ⊆ B ′] =⇒ (A,B) = (A ′,B ′)};
∀(A,B) ∈ Y : [p(A,B) ∈ P],i ∈ P, o ∈ P; F = {(a,p(A,B)|(A,B) ∈ Y ∧ a ∈ A} ∪

{(p(A,B),b)|(A,B) ∈ Y ∧ b ∈ B}∪ {(i, ta)|ta ∈ TI}∪ {(ta,o)|ta ∈ TO}. 2

The α-algorithm can discover a large class of WF-nets under the assumption that
the given event log is complete with respect to the relation >L and free of noise.
Note that the α-algorithm actively tries to discover parallel behavior based on
traces of atomic events. Most commercial tools, however, apply a strategy where
parallel behavior is induced based on overlapping activities with duration, and
all other binary sequences are regarded as non-parallel �ows. Disco [90], for
instance, applies a similar technique in order to derive a process model which
can most easily be expressed as a C-net:

De�nition 1.17. Naive C-net discovery. Input: an event log L. Output: a
Causal net CN = (TC, ts, te, I,O).

We assume all events σi to have start and completion time-stamps, pro-
vided by StartTime(σi) and EndTime(σi). If an event is atomic, the
time of completion is equal to the start time.

24 1.2. PRELIMINARIES

Prepend and append each trace σ ∈ L with a unique start s and ending
event e (σ = 〈s,σ1, . . . ,σ|σ|,e〉) with start and completion timings such that
the start event comes before all events in the event log and the ending
event comes after all events in the event log. Both these events are atomic.

∀a ∈ LA : [ta ∈ TC], ts and te follow from the prepended and appended
activities.

We create a dependency graph D as follows: ∀σ ∈ L, i = {2, . . . , |σ|}, we
�nd ArgMaxj(j < i∧EndTime(σj) < StartTime(σi)) and add (σj,σi)
to D. Note that this will create dependency arcs between each successive
activity, unless the activity overlaps which its predecessor, in which case
the activity is dependent on the closest completed predecessor.

To convert the dependency graph to a C-net, we establish input and out-
put bindings so that. I(t) = P({a ∈ TC|(a, t) ∈ D}) \ ∅ (the most le-
nient possibility regarding input combinations) and O(t) = {e|e ∈ P({a ∈

TC|(t,a) ∈ D}) \ ∅ ∧ ∃σ ∈ L : [∀x,y ∈ e : [x 6= y ∧ x ∈ σ ∧ y ∈

σ∧ (StartTime(x) < EndTime(y) < EndTime(x)∨ StartTime(x) <

StartTime(y) < EndTime(x))]]]}, i.e. bindings are added for each com-
bination of dependent activities which were observed in an overlapping
fashion.

Note: in case events do not contain start and completion times but are instead
split up in two atomic events, a matching step needs to be performed to match
starting and completion events (consider for instance a trace 〈start,astart,
astart,aend,aend,end〉). Disco, for instance, applies a FIFO approach to match
the �rst encountered ending event with the �rst encountered starting event. 2

1.2.2.3 Conformance Checking

Next to process discovery, another common process mining task pertains to pro-
cess conformance checking, where existing process models are compared with
real-life behavior as captured in event logs so as to measure how well a process
model performs with respect to the actual executions of the process at hand [99].
As such, the “goodness” of a process model is typically assessed over the fol-
lowing four quality dimensions [47, 99]: �tness (or: recall, sensitivity), indicat-
ing the ability of the process model to correctly replay the observed behavior;

CHAPTER 1. INTRODUCTION 25

precision (or: appropriateness), i.e. the model’s ability to disallow unwanted be-
havior; generalization, which indicates the model’s ability to avoid over�tting;
and �nally, simplicity (or: structure, complexity, comprehensibility), stating that
simpler process models should be preferred above more complex ones if they
are able to �t the observed behavior just as well, thus embodying the principle
of Occam’s Razor. Table 1.2 provides an overview of well-known conformance
checking algorithms.

1.3 Arti�cial Negative Events

The �eld of process mining is faced with some typical di�culties. For instance,
process discovery algorithms have to deal with the discovery of complex struc-
tural behavior such as non-free choice, invisible activities (which were executed
but not recorded in an event log) and duplicate activities, which make the hy-
pothesis space of such algorithms harder to navigate. Secondly, process mining
algorithms have to be able to work with event logs which are incomplete, or
contain noisy, incorrect data. This often leads to the discovery of models which
over�t the given log, a problem which is also closely related to the fact that the
learning tasks in process mining are most commonly limited to the harder setting
of unsupervised learning, since information about state transitions (e.g. starting,
completing) that were prevented from taking place is often unavailable in real-
life event logs and consequently cannot guide the learning task [2]. This latter
issue will be our focus throughout the �rst part of this dissertation, namely the
absence of negative examples in event logs, i.e. the absence of negative events.

Several methods have been proposed in literature to tackle the issue of negative
events in process event logs, often in the context of supervised classi�cation tech-
niques and the application of machine learning on process discovery, the latter
of which requires the presence of negative examples in order to distinguish the
right hypothesis from an in�nite number of possible grammars that �t the posi-
tive examples [115]. Note that event logs sometimes do contain negative events
in a natural manner (negative events in a natural manner). Access and security
logs, for example, contain detailed information about users that were refused
authorization to perform a particular task, or to access a particular resource. In
many cases, however, information systems do not reveal or capture these nega-
tive events, so that authors have pursued a variety of approaches to deal with this
issue. Maruster et al. [63], for instance were among the �rst to investigate the use

26 1.3. ARTIFICIAL NEGATIVE EVENTS

Ta
bl

e
1.2

:O
ve

rv
ie

w
of

w
el

l-k
no

w
n

co
nf

or
m

an
ce

ch
ec

ki
ng

al
go

rit
hm

s.

Ye
ar

N
am

e
(S

ym
bo

l)
Au

th
or

(s
)

M
od

el
In

pu
t

Ty
pe

�
al

it
y

D
im

en
si

on
20

06
Co

nt
in

uo
us

Pa
rs

in
g

M
ea

su
re

(C
P
M

)
W

ei
jte

rs
et

al
.[

44
]

H
eu

ris
tic

ne
t

Re
ca

ll
20

06
Pa

rs
in

g
M

ea
su

re
(P
M

)
W

ei
jte

rs
et

al
..[

44
]

H
eu

ris
tic

ne
t

Re
ca

ll
20

06
Im

pr
ov

ed
Co

nt
in

uo
us

Se
m

an
tic

s(
P
F
c
o
m
p
le
t
e

or
I
C
S

)
A

lv
es

de
M

ed
ei

ro
se

ta
l.

[6
6]

H
eu

ris
tic

ne
t

Re
ca

ll
20

06
Co

m
pl

et
en

es
s

Gr
ec

o
et

al
.[

62
]

W
or

k�
ow

sc
he

m
a

Re
ca

ll
20

06
So

un
dn

es
s

Gr
ec

o
et

al
.[

62
]

W
or

k�
ow

sc
he

m
a

Pr
ec

isi
on

20
08

Fi
tn

es
s(
f
)

Ro
zi

na
ta

nd
va

n
de

rA
al

st
[1

00
]

Pe
tri

ne
t

Re
ca

ll
20

08
Pr

op
er

Co
m

pl
et

io
n

(p
P
C

)
Ro

zi
na

ta
nd

va
n

de
rA

al
st

[1
00

]
Pe

tri
ne

t
Re

ca
ll

20
08

Be
ha

vi
or

al
A

pp
ro

pr
ia

te
ne

ss
(a
B

)
Ro

zi
na

ta
nd

va
n

de
rA

al
st

[1
00

]
Pe

tri
ne

t
Pr

ec
isi

on
20

08
Ad

va
nc

ed
Be

ha
vi

or
al

A
pp

ro
pr

ia
te

ne
ss

(a
′ B

)
Ro

zi
na

ta
nd

va
n

de
rA

al
st

[1
00

]
Pe

tri
ne

t
Pr

ec
isi

on
20

08
St

ru
ct

ur
al

A
pp

ro
pr

ia
te

ne
ss

(a
S

)
Ro

zi
na

ta
nd

va
n

de
rA

al
st

[1
00

]
Pe

tri
ne

t
Si

m
pl

ic
ity

20
08

Ad
va

nc
ed

St
ru

ct
ur

al
A

pp
ro

pr
ia

te
ne

ss
(a
′ S
)

Ro
zi

na
ta

nd
va

n
de

rA
al

st
[1

00
]

Pe
tri

ne
t

Si
m

pl
ic

ity
20

09
Be

ha
vi

or
al

Re
ca

ll
(r
p B

or
r
B

)
Go

ed
er

tie
re

ta
l.

[2
],

va
nd

en
Br

ou
ck

e
et

al
.[

10
1]

Pe
tri

ne
t

Re
ca

ll
20

09
Be

ha
vi

or
al

Sp
ec

i�
ci

ty
(s
n B

)
Go

ed
er

tie
re

ta
l.

[2
]

Pe
tri

ne
t

Pr
ec

isi
on

20
10

Be
ha

vi
or

al
Pr

o�
le

-b
as

ed
Co

nf
or

m
an

ce
m

et
ric

s(
M
C
C

,C
C
C

,e
tc

.)
W

ei
dl

ic
h

et
al

.[
10

2–
10

4]
Pe

tri
ne

t
Re

ca
ll

20
10

ET
C

Pr
ec

isi
on

(e
t
c
p

)
M

uñ
oz

-G
am

a
et

al
.[

10
5,

10
6]

Pe
tri

ne
t

Pr
ec

isi
on

20
11

Be
ha

vi
or

al
Pr

ec
isi

on
(p
B

)
D

e
W

ee
rd

te
ta

l.
[1

07
]

Pe
tri

ne
t

Pr
ec

isi
on

20
11

F-
m

ea
su

re
(F

1)
D

e
W

ee
rd

te
ta

l.
[1

07
]

Pe
tri

ne
t

Re
ca

ll
an

d
Pr

ec
isi

on
20

11
(A

ve
ra

ge
)A

lig
nm

en
tB

as
ed

Tr
ac

e
Fi

tn
es

s(
f
a

,f
a
v
g

a
)

va
n

de
rA

al
st

et
al

.[
10

8–
11

1]
Pe

tri
ne

t
Re

ca
ll

20
12

A
lig

nm
en

tB
as

ed
Pr

ec
isi

on
(p
A

)
Ad

ria
ns

ya
h

et
al

.[
10

9]
Pe

tri
ne

t
Pr

ec
isi

on
20

12
A

lig
nm

en
tB

as
ed

Pr
ob

ab
ili

st
ic

Ge
ne

ra
liz

at
io

n
(g
A

)
Ad

ria
ns

ya
h

et
al

.[
10

9]
Pe

tri
ne

t
Ge

ne
ra

liz
at

io
n

20
12

O
ne

A
lig

n
Pr

ec
isi

on
(a

1 p
)

Ad
ria

ns
ya

h
et

al
.[

11
2]

Pe
tri

ne
t

Pr
ec

isi
on

20
12

Be
st

A
lig

n
Pr

ec
isi

on
(a
p

)
Ad

ria
ns

ya
h

et
al

.[
11

2]
Pe

tri
ne

t
Pr

ec
isi

on
20

12
Pr

ob
ab

ili
st

ic
Ge

ne
ra

liz
at

io
n

Bu
ijs

et
al

.[
11

3]
Pr

oc
es

st
re

e
Ge

ne
ra

liz
at

io
n

20
07

Va
rio

us
sim

pl
ic

ity
m

et
ric

s
M

en
dl

in
g

et
al

.[
11

4]
Pe

tri
ne

t
Si

m
pl

ic
itu

20
14

W
ei

gh
te

d
Be

ha
vi

or
al

Pr
ec

isi
on

(p
w B

)
va

nd
en

Br
ou

ck
e

et
al

.[
10

1]
Pe

tri
ne

t
Pr

ec
isi

on
20

14
W

ei
gh

te
d

Be
ha

vi
or

al
Ge

ne
ra

liz
at

io
n

(g
w B

)
va

nd
en

Br
ou

ck
e

et
al

.[
10

1]
Pe

tri
ne

t
Ge

ne
ra

liz
at

io
n

20
14

Im
pr

ov
ed

Co
nt

in
uo

us
Se

m
an

tic
s(
I
C
S

)
va

nd
en

Br
ou

ck
e

et
al

.(
Ch

ap
te

r5
)

Ca
us

al
ne

t
Fi

tn
es

s
20

14
Fl

ow
m

et
ric

(F
lo
w

)
va

nd
en

Br
ou

ck
e

et
al

.(C
ha

pt
er

5)
Ca

us
al

ne
t

Fi
tn

es
s

20
14

Fu
zz

y
m

et
ric

(F
u
z
z
y

)
va

nd
en

Br
ou

ck
e

et
al

.(C
ha

pt
er

5)
Ca

us
al

ne
t

Fi
tn

es
s

20
14

Re
ca

ll
m

et
ric

(R
e
c
a
ll

)
va

nd
en

Br
ou

ck
e

et
al

.(C
ha

pt
er

5)
Ca

us
al

ne
t

Fi
tn

es
s

20
14

Pa
rs

in
g

M
ea

su
re

(P
M

)
va

nd
en

Br
ou

ck
e

et
al

.(C
ha

pt
er

5)
Ca

us
al

ne
t

Fi
tn

es
s

20
14

Fi
tti

ng
Si

ng
le

Tr
ac

e
M

ea
su

re
(P
M

1)
va

nd
en

Br
ou

ck
e

et
al

.(C
ha

pt
er

5)
Ca

us
al

ne
t

Fi
tn

es
s

CHAPTER 1. INTRODUCTION 27

of rule-induction techniques to predict dependency relationships between activ-
ities. The authors use the uni-relational classi�cation learner RIPPER [116, 117]
on a table of direct metrics for each process activity in relation to other activities,
which is generated in a pre-processing step. This conversion is performed in or-
der to deal with the absence of negative events, which are thus not considered in
the discovery task (ignore negative events). Next, Ferreira and Ferreira [64] apply
a combination of inductive logic programming and partial-order planning tech-
niques to process mining. In this context, negative events are collected from users
and domain experts who indicate whether a proposed execution plan is feasible
or not, iteratively combining planning and learning to discover a process model
(collect negative events from domain experts). Lamma et al. [69, 118–120] apply an
extension of logic programming, SCIFF, towards declarative process discovery.
Process discovery techniques using SCIFF also requires the presence of negative
events (or “non-compliant” traces), but unlike the approach of Ferreira and Fer-
reira, the authors assume the presence of negative events, without providing an
immediate answer to their origin (assume negative events as given). Goedertier
et al. [2] represent the process discovery task as a multi-relational �rst-order
classi�cation learning problem and use the TILDE inductive logic programming
learner for their AGNEsMiner algorithm to induce the discriminating precondi-
tions that determine whether an event can take place or not, given a history of
events of other activities. These preconditions are then converted to a graphical
model after applying a pruning and post-processing step. To guide the learning
process, an input event log is supplemented with induced negative events by re-
playing the positive events of each process instance and by checking if a state
transition of interest corresponding to a candidate negative event could occur,
more speci�cally by investigating if other traces can be found in the event log
which do allow this state transition, and present a similar history of completed
activities. If no such similar trace can be found, a negative event is induced (ar-
ti�cially induced negative events). This basic process of arti�cially generating
negative events is described in a more formal way by Algorithm 1.1.

Generating a robust set of arti�cial negative events boils down to �nding an
optimal set of negative examples under the counteracting objectives of correct-
ness and completeness. Correctness implies that the generation of false negative
events has to be prevented, while completeness entails the induction of “non-
trivial” negative events, that is, negative events which are based on constraints
imposed by complex structural behavior, such as non-free choice constructs. The
existence of the trade-o� between these two goals is due to a “completeness as-
sumption” one has to make over a given event log when generating arti�cial

28 1.3. ARTIFICIAL NEGATIVE EVENTS

Algorithm 1.1 Basic arti�cial negative event generation in an event log.
Input: An event log L
Output: A setN of induced arti�cial negative events

1: N := ∅
2: for all σ ∈ L do
3: for all σi ∈ σ do
4: for all a ∈AL \ {σi} do
5: if @τ ∈ L : [σ 6= τ∧a = τi ∧ ∀l ∈ {1, . . . , i− 1} : [σl = τl]] then
6: % Record negative event at position i in trace σ for activity a:
7: N :=N∪ {(σ, i,a)}
8: end if
9: end for

10: end for
11: end for
12: returnN

negative events. Under its most strict form, the completeness assumption states
that the given event log contains all possible traces that can occur. Without some
assumption regarding the completeness of a given event log, it would be impossi-
ble to induce any negative events at all, since no single candidate negative event
can be introduced in the knowledge that the given log does not cover all possi-
ble cases. Note that process discovery algorithms make a similar assumption, in
order to derive models which are not overly general. Under the strictest comple-
tion assumption, however, the expectation is that all possible trajectories in the
process model to be learned have corresponding process instances in the event
log. Otherwise, a large number of negative events could be falsely induced, due
to the fact that there are not enough similar traces present in the event log in
order to prove the possible occurrence of a considered state transition and con-
sequently disprove the validity of a candidate negative event. A large number of
process instances is thus required in order to correctly induce negative events.
(This is the problem faced by the naive approach in Algorithm 1.1.) As mentioned
in the introduction, processes containing concurrent (parallelism) and recurrent
(loops) behavior exponentially increase the number of allowed traces which can
occur, so that the completeness assumption can become problematic. Obviously,
the question on how we can make the arti�cial negative event induction algo-
rithm robust to di�erent levels of log completeness is an important challenge
to address. To do so, AGNEsMiner [2] implements a window size parameter to
restrict the number of events which are compared when evaluating a candidate
negative event. In the work presented in this dissertation, we aim to make the
completeness assumption more con�gurable and the generation procedure more
robust so that the induction of false negative events in cases where an event
log does not capture all possible behavior is prevented (correctness), while also
remaining able to derive “non-trivial” negative events, that is, negative events
following from complex structural behavior (completeness).

CHAPTER 1. INTRODUCTION 29

Enhancing a process log with a correct and complete set of negative events is use-
ful for a number of reasons. First, supervised learners can now be employed in
order to perform a process discovery task. Multi-relational learning techniques
have already been applied in this context, using inductive logic programming in
order to learn a process model from a given event log supplemented with neg-
ative events. We refer to [119–123] for a detailed overview of inductive logic
programming and its applications in the �eld of process mining. Second, event
logs supplemented with negative events can also be applied towards evaluation
purposes, in order to assess �tness, precision and generalization capabilities of
process discovery algorithms. For instance, the metrics in [2, 107] make use of
event logs containing negative events to compose a confusion matrix in concor-
dance with standard metric de�nitions in the �eld of data mining. In Chapter 3,
we will extend this with more robust precision and generalization metrics. Third,
since negative events capture which actions in a process could not occur, compli-
ance and conformance related analysis tasks present themselves as a natural area
of application for negative events. For example, auditors can cross-check a set
of induced negative events with the expected behavior of real-life processes to
determine if prohibited actions were indeed captured in this generated set of re-
jected activity state transitions. We will explore this in more detail in Chapter 4.
Another speci�c example is access rule mining. Often, users are not so much in-
terested in the actual control policy already present in a speci�c process, as this
policy might already have been formally speci�ed, but rather in a more restric-
tive policy that reveals which access rules are unnecessary. Negative events can
then stipulate that a particular agent did never perform a particular activity at a
given time, even although it could be the case that this agent o�cially had the
rights to do so. In this way, learners could distinguish access rules that are actu-
ally needed, instead of leaving the establishment of such rules and modi�cations
of policies to modelers and business practitioners alone. As shown hereafter, our
contributions provide some important bene�ts with regard to correctness and
completeness when compared with earlier techniques, allowing to improve the
obtained results when executing the aforementioned analysis tasks.

30 1.3. ARTIFICIAL NEGATIVE EVENTS

31

Chapter 2

Improved Arti�cial Negative Event Induction

“Positive anything is better than negative nothing.”
– Elbert Hubbard

2.1 Introduction

As we have discussed in the introductory chapter, the �rst part of this dissertation
focuses on the problem of arti�cial negative event induction, to use in situations
where only positive events are provided in a given event log.

Recall that inducing a robust set of arti�cial negative events boils down to �nd-
ing an optimal set of negative examples under the counteracting objectives of
correctness and completeness. Correctness implies that the generation of false
negative events has to be prevented, while completeness entails the induction of
“non-trivial” negative events, that is, negative events which are based on con-
straints imposed by complex structural behavior, such as non-free choice con-
structs. The existence of the tradeo� between these two goals is due to the com-
pleteness assumption made over an event log when generating arti�cial negative
events. Under its most strict form, a completeness assumption requires that the
given event log contains all possible traces that can occur. Without some assump-
tion regarding the completeness of a given event log, it would be impossible to
induce any negative events at all, since no single candidate negative event can be
introduced in the knowledge that the given log does not cover all possible cases.

32 2.1. INTRODUCTION

Note that process discovery algorithms make a similar assumption, in order to
derive models which are not overly general. Assuming a strict completeness
assumption as de�ned above is, however, often unrealistic in practice for the fol-
lowing reasons. First, when loops can occur in the process model at hand, the
number of possible traces can be in�nite, so that no single bounded event log
can possibly contain all trace variants. Second, when parallelism is present, an
exponential number of execution paths can be de�ned, corresponding with the
order in which the concurrent task are handled. Finally, even without loops or
parallelism but just N binary choices, the number of possible traces can still be
2N. Therefore, many process discovery algorithms make a weaker completeness
assumption. For example, the formal α-algorithm [55] only derives information
from explicit dependencies, meaning that an event log that contains each possi-
ble sequence of activities (one directly following the other) in one of its traces
su�ces. Remark that this does not entail that the α-algorithm will be able to
correctly mine each model using just this information, but only that this is the
initial assumption made over the given input.

In this chapter, we outline an arti�cial negative event generation method based
on a technique �rst introduced in the AGNEsMiner process discovery algo-
rithm [2]. In the original version of the algorithm, a con�gurable completeness
assumption is de�ned by proposing a window size parameter and a negative
event injection probability. This chapter outlines a �rst collection of improve-
ments in order to make this completeness assumption more con�gurable and
the generation procedure more robust so that the introduction of falsely induced
negative events in cases where an event log does not capture all possible behav-
ior is prevented (correctness), while also remaining able to derive “non-trivial”
negative events, that is, negative events following from complex structural be-
havior (completeness). Ensuring a correct induction of negative events proves
especially helpful in practice when these events are subsequently used for eval-
uation purposes. Goedertier et al. [2] for instance de�ne two evaluation metrics
to assess recall and speci�city (i.e. the amount of behavior present in the event
log which is captured by the proposed process model) using negative events. De
Weerdt et al. [107] additionally de�ne a precision measure based on negative
events to gauge whether a mined process model does not under�t the behavior
present in the event log. In Chapter 3, we will also propose a novel precision and
generalization measure based on negative events.

To summarize, the goal of the improvements presented hereafter is inherently
related to the correctness-completeness tradeo� as described above. First, we

CHAPTER 2. IMPROVED ARTIFICIAL NEGATIVE EVENT INDUCTION 33

always want to allow for a parameter con�guration so that the completeness as-
sumption made by the event generation algorithm is as weak as or weaker than
the completeness assumption made by the process mining technique(s) used in
a subsequent step (with the goal of either discovery or evaluation), so that no
incorrect arti�cial negative events are introduced which could throw o� process
mining techniques using these negative examples or skew evaluation results (cor-
rectness). Second, we want to generate all correct negative events, especially
those following from complex behavior, so that these arti�cial negative events
provide valuable information for subsequent discovery algorithms or allow to
distinguish performance di�erences between discovery algorithms in an evalu-
ation context, for instance (completeness). Although these two goals counteract
each other (due to the completeness assumption made), we show that the pro-
posed improvements help to improve both objectives in a simultaneous manner.

2.2 Preliminaries

2.2.1 Related Work

Several methods have been proposed in literature to tackle the issue of negative
events in process event logs, often in the context of supervised classi�cation
techniques and the application of machine learning on process discovery, the
latter of which requires the presence of negative examples in order to distinguish
the right hypothesis from an in�nite number of possible grammars that �t the
positive examples [115].

As recalled from the introductory chapter, related literature lists the following
ways on how negative events can “present” themselves:

Negative events in a natural manner. some event logs contain negative
events in a natural manner. Access and security logs, for example, con-
tain detailed information about users that were refused authorization to
perform a particular task, or to access a particular resource.

Ignore negative events. Maruster et al. [63] were among the �rst to investi-
gate the use of rule-induction techniques to predict dependency relation-
ships between activities. To do so, the uni-relational classi�cation learner

34 2.2. PRELIMINARIES

RIPPER [116, 117] is applied on a table of direct metrics for each process ac-
tivity in relation to other activities, which is generated in a pre-processing
step. This conversion is performed in order to deal with the absence of
negative events, which are thus not considered in the discovery task.

Collect negative events from domain experts. Ferreira and Ferreira [64] apply
a combination of inductive logic programming and partial-order planning
techniques to process mining. In this context, negative events are collected
from users and domain experts who indicate whether a proposed execu-
tion plan is feasible or not, iteratively combining planning and learning to
discover a process model.

Assume negative events. Lamma et al. [69, 118–120] apply an extension
of logic programming, SCIFF, towards declarative process discovery. This
also requires the presence of negative events (or “non-compliant” traces),
but unlike the approach of Ferreira and Ferreira, the authors assume the
presence of negative events, without providing an immediate answer to
their origin.

Arti�cially induce negative events. Goedertier et al. [2] represent the pro-
cess discovery task as a multi-relational �rst-order classi�cation learning
problem. The authors use the TILDE inductive logic programming learner
for their AGNEsMiner algorithm to induce the discriminating precondi-
tions that determine whether an event can take place or not, given a his-
tory of events of other activities. These preconditions are then converted
to a graphical model after applying a pruning and post-processing step.
To guide the learning process, an input event log is supplemented with
induced negative events by replaying the positive events of each process
instance and by checking if a state transition of interest corresponding to
a candidate negative event could occur, more speci�cally by investigat-
ing if other traces can be found in the event log which do allow this state
transition, and present a similar history of completed activities. If no such
similar trace can be found, a negative event is induced.

2.2.2 Arti�cial Negative Event Generation

Since we extend the negative event generation algorithm as introduced in AG-
NEsMiner [2], we repeat the original version of the algorithm below for the sake
of completeness. Note that this chapter will use the de�nition of an event log

CHAPTER 2. IMPROVED ARTIFICIAL NEGATIVE EVENT INDUCTION 35

and Petri net as given by the introductory chapter. We de�ne an additional pred-
icate x.y as a shorthand to represent two subsequent event identi�ers within a
sequence σ, i.e. x.y ⇐= ∃σi ∈ σ : [σi = x∧σi+1 = y]. We will use this predicate
in a context of single sequence which is therefore left implicit.

A high level overview of the original algorithm can be given as follows. Negative
events record that at a given position in an event sequence, a particular event
cannot occur. At each position in each event trace in the log, it is examined
which negative events can be recorded for this position. The algorithm works in
three phases:

1. In a �rst step, frequent temporal constraints are mined from the event log.

2. Secondly, parallelism and locality information is derived from these fre-
quent temporal constraints.

3. Finally, all negative events are induced for each grouped process instance.
The technique stipulates that, to do so, the event log is made more com-
pact by grouping process traces that have identical sequences into grouped
process instances, so that searching for similar behavior in the event log
can be performed more e�ciently. This corresponds to the de�nition of a
“distinct event log” as given in the introductory chapter.

We outline these three steps in more detail below.

2.2.2.1 Step 1: Mining Frequent Temporal Constraints

Frequent temporal constraints are constraints that hold in a su�cient number
of sequences σ within an event log L. The following list of predicates express
temporal constraints that either hold or not for a particular sequence σ ∈ L, with
a,b,c ∈AL activity types:

36 2.2. PRELIMINARIES

Existence(1,a,σ) ⇐⇒ ∃σi ∈ σ : [σi = a]

Absence(2,a,σ) ⇐⇒ @σi,σj ∈ σ : [i 6= j∧σi = a∧σj = a]

Ordering(a,b,σ) ⇐⇒ ∃σi,σj ∈ σ : [i < j∧σi = a∧σj = b]

Precedence(a,b,σ) ⇐⇒ ∀σj ∈ σ,σj = b : [∃σi ∈ σ : [σi = a∧ i < j]

Response(a,b,σ) ⇐⇒ ∀σi ∈ σ,σi = a : [∃σj ∈ σ : [σj = b∧ i < j]

ChainPrec(a,b,σ) ⇐⇒ ∀σi ∈ σ,σi = b : [σi−1 = a]

ChainResp(a,b,σ) ⇐⇒ ∀σi ∈ σ,σi = a : [σi+1 = b]

ChainSeq(a,b,c,σ) ⇐⇒ ∃σ ∈ σ : [σi = a∧σj = b∧σk = c]

A note to clarify: the ChainPrec(a,b,σ) predicate in itself expresses that all
occurrences of activity type b must be preceded by a, but a can also precede
activity types other then b. The ChainResp(a,b,σ) predicate in itself expresses
that all occurrences of activity typeamust be followed by b, but b can also follow
activity types other then a.

For an event log L, a temporal constraint c is considered frequent if its support
is greater than or equal to a prede�ned threshold. Let ci and cj be two temporal
constraints ∈ CL the set of all derived temporal constraints for an event log L.
The support for a temporal constraint can then be de�ned as: Supp(ci) =

|S|
|L|

for which S is a set containing the sequences σ ∈ L for which ci holds. Temporal
constraints can also be combined to form temporal association rules of the form
ci→ cj. The support and con�dence of an association rule are de�ned as:

Supp(ci→ cj) = Supp(ci) Conf(ci→ cj) =
Supp(ci ∧ cj)

Supp(ci)

Temporal association rules are considered frequent if their support and con�-
dence are greater than or equal to a prede�ned threshold. Since some activities
occur more frequently than others in some event logs, the detection of frequent
patterns must not be sensitive to the frequency of occurrence of a particular ac-
tivity type in the event log. Consider the case where the temporal constraint
ChainResp(a,b,σ) has a large support, while in reality the subsequence 〈a,b〉
does not frequently occur in L. Consider for an example an event log contain-
ing a large number of traces that do not contain activity type a. When checking
the rule ChainResp(a,b,σ) over all traces in σ ∈ L, this expression will hold
true for all traces that do not contain a. Since these traces make up for a large
part of the event log, the support of ChainResp(a,b) would thus be high. To
detect frequent patterns in an event log, it is therefore more important to look at

CHAPTER 2. IMPROVED ARTIFICIAL NEGATIVE EVENT INDUCTION 37

the con�dence of the association rule Existence(1,a,σ)→ ChainResp(a,b,σ).
The following frequent temporal association rules are derived from an event log
L (left implicit)1:

Absence(2,a) ⇐= ∀a ∈AL : [Supp(Absence(2,a,σ)) > tabsence]
Ordering(a,b) ⇐= ∀a,b ∈AL : [Supp(Ordering(a,b,σ),L) > tordering]

Precedence(a,b) ⇐= ∀a,b ∈AL : [Conf(Existence(1,b,σ)
→ Precedence(a,b,σ),L) > tsuccession]

Response(a,b) ⇐= ∀a,b ∈AL : [Conf(Existence(1,a,σ)
→ Response(a,b,σ),L) > tsuccession]

ChainPrec(a,b) ⇐= ∀a,b ∈AL : [Conf(Existence(1,b,σ)
→ ChainPrec(a,b,σ),L) > tchain]

ChainResp(a,b) ⇐= ∀a,b ∈AL : [Conf(Existence(1,a,σ)
→ ChainResp(a,b,σ),L) > tchain]

ChainSeq(a,b,c) ⇐= ∀a,b,c ∈AL : [Supp(ChainSeq(a,b,c,σ),L) > ttriple]

2.2.2.2 Step 2: Deriving Structural Information

Now that a set of temporal frequent constraints is constructed, it becomes pos-
sible to derive information about parallelism and locality of pairs of activities.
Intuitively, parallelism between two activities a,b ∈AL can be assumed when it
is the case in the event log L that a frequently follows b and b frequently follows
a. However, in the case of duplicate activities, a triple chain subsequence 〈a,b,a〉
or 〈b,a,b〉 could occur in serial, without the presence of parallelism. Therefore,
we require these triple chain sequences not to occur, unless it can be detected that
a and b are actually part of two separate, parallel length-one loops, see Figure 2.1.
This is the case when subsequences like 〈a,a,b〉, 〈b,a,a〉, 〈b,b,a〉 or 〈a,b,b〉 are
also frequent. Parallel(a,b) can consequently be de�ned as follows2:

∀a,b ∈AL :[(ChainPrec(a,b)∨ChainResp(a,b))∧
(ChainPrec(b,a)∨ChainResp(b,a))∧
(∼ ChainSeq(a,b,a)∧ ∼ ChainSeq(b,a,b)∨
ParallelLoop(a,b))] =⇒ Parallel(a,b)

∀a,b ∈AL :[Parallel(a,b)] =⇒ Parallel(b,a)

∀a,b ∈AL :[ChainSeq(a,a,b)∨ChainSeq(b,a,a)∨ChainSeq(a,b,b)∨
ChainSeq(b,b,a)] =⇒ ParallelLoop(a,b)

1In the original de�nition, the predicatesOrdering(a,b) andChainSeq(a,b,c) do not
account for the mutual distribution of the activity typesa, b and c. They remain therefore sensitive
to their frequency of occurrence.

2Remark that we use negation-as-failure (∼) rather than normal logical negation (¬) to denote
that the absence of a frequent temporal constraint is derived from the absence of sequences in the
event log that portray this behavior. In this context, the reader may ignore the exact semantic di�er-
ences between the two notations, as ∼ p =⇒ ¬p under a closed-world assumption.

38 2.2. PRELIMINARIES

start a

b

end

Figure 2.1: Two parallel length one loops make the induction of parallelism challenging.

Locality (serial occurrence denoting an explicit dependency) between activities
can also be derived from the frequent temporal constraints. As a rule of thumb,
a is local to b if a is frequently followed by b or b is frequently preceded by a:

∀a,b ∈AL :[ChainPrec(a,b)∧ ∼ Parallel(a,b)] =⇒ Local(a,b)
∀a,b ∈AL :[ChainResp(a,b)∧ ∼ Parallel(a,b)] =⇒ Local(a,b)

Unlike parallelism, locality is not symmetric, i.e. Local(a,b) does not imply
Local(b,a). In the presence of parallelism, it is highly likely that not all local
relationships can be detected. Consider the situation in Figure 2.2(a). Although
a is local to b it is possible that the subsequence 〈a,b〉 occurs infrequently in the
event log, due to the parallelism between b and c causing sequence 〈a,c,b〉 to
occur far more than 〈a,b,c〉. In such cases, however, Local(a,b) can be derived
from the parallelism of b and c. Figure 2.2(b) on the other hand depicts a situation
in which such an inference cannot be made. These concerns are translated in the
following derivation rule:

∀a,b ∈AL :[∃c ∈AL : [Parallel(b,c)∧ ∼ Parallel(a,c)∧
∼ Parallel(a,b)∧ (ChainPrec(a,c)∨ChainResp(a,c))]∧
@d ∈AL : [(ChainResp(d,b)∨ChainPrec(d,b))∧

∼ Parallel(d,b)]] =⇒ Local(a,b)

The same reasoning for an AND-split can be applied to an AND-join, as displayed
in Figure 2.2(c, d), leading to the following second derivation rule:

CHAPTER 2. IMPROVED ARTIFICIAL NEGATIVE EVENT INDUCTION 39

a
b

c

(a) Local(a,b)

a
bc

d

(b) ∼ Local(a,b)

a
b

c

(c) Local(a,b)

a
b

c

d

(d) ∼ Local(a,b)

Figure 2.2: Deriving locality from parallelism.

∀a,b ∈A :[∃c ∈AL : [Parallel(a,c)∧ ∼ Parallel(b,c)∧
∼ Parallel(a,b)∧ (ChainPrec(c,b)∨ChainResp(c,b))]∧
@d ∈AL : [(ChainResp(a,d)∨ChainPrec(a,d))∧

∼ Parallel(a,d)]] =⇒ Local(a,b)

2.2.2.3 Step 3: Generating Arti�cial Negative Events

Once parallelism and locality information is derived, negative examples can be
introduced in grouped process instances by checking at any given positive event
whether any other activity type in the event log could occur as an event at this
position. To address the problematic nature of the completeness assumption of
an event log under recurrent behavior (loops), a window size parameter ws is
introduced to limit the number of events which are compared when evaluating
a candidate negative event. The larger the window size, the less probable that
a similar subsequence is contained by the other sequences in the event log, and
the more probable that a candidate negative event will be introduced. Reducing
the window size makes the completeness assumption less strict. An unlimited

40 2.2. PRELIMINARIES

Given:
σ 〈a,b, c,d, e, f〉

Parallel(b,d)
Parallel(c,d)
Parallel(b, e)
Parallel(c, e)

Parallel variants:
σ|| 〈a,b, c,d, e, f〉
σ|| 〈a,b,d, c, e, f〉
σ|| 〈a,b,d, e, c, f〉
σ|| 〈a,d,b, e, c, f〉
σ|| 〈a,d, e,b, c, f〉

a
b c

d e
f

Figure 2.3: Calculating parallel variants for a trace based on derived structural informa-
tion.

window size (a maximum-length comparison between sequences) results in the
most strict completeness assumption.

Concurrent behavior (parallelism) can pose problems with regards to the com-
pleteness assumption of an event log as well. This issue is addressed by exploiting
the previously mined parallelism information to generate parallel variants of a
subsequence at hand which is used to disprove a particular candidate negative
event. Taking the parallelism information into account results in a higher num-
ber of subsequences which will be used when evaluating a negative event and
thus results in a weaker completeness assumption. The calculation of parallel
variants is illustrated in Figure 2.3.

Negative events record that at a particular position in an event sequence, a par-
ticular event cannot occur. At each position i in each event sequence σ ∈ L,
it is examined which negative events can be introduced at this position. Algo-
rithm 2.1 formalizes this process. The algorithm loops over all traces σ ∈ ⋃L (the
distinct event log). For each “positive trace” under consideration, we iterate over
all activities σi ∈ σ and check whether another event of interest (a “candidate
negative event”) n ∈AL \ {σi} also could occur. As such, for each positive event
σi ∈ σ, it is tested whether there exists a sequence τ|| ∈ {τ ∈ PV(λ)|λ ∈

⋃
L\{σ}}

in the event log in which at that point an event τ||i = n has taken place, with
PV : σ ∈ L 7→ PVσ a function which returns the set PVσ containing all parallel
variants of a trace and contains a similar history up until the occurrence of τ||i
as the trace σ exhibits up until σi. If such a similar “disproving sequence” can

CHAPTER 2. IMPROVED ARTIFICIAL NEGATIVE EVENT INDUCTION 41

not be found, such behavior is not present in the event log L, meaning that the
candidate negative event n cannot be disproved and is added at position i in the
positive sequence σ. Finally, the induced arti�cial negative events in the grouped
traces can, naturally, be used to induce negative events in the complete event log
L. Usually, a very large number of negative events can be generated, so that a
probability π is introduced as a threshold for injecting negative events into the
ungrouped sequences.

Algorithm 2.1 Arti�cial negative event generation algorithm—original AG-
NEsMiner implementation [2].
Input: An event log L
Input: Window size parameterws
Output: A setN of induced arti�cial negative events

1: N := ∅
2: for all σ ∈

⋃
L do

3: for all σi ∈ σ do
4: for all n ∈AL \σi do
5: if @τ|| ∈ {τ ∈ PV(λ)|λ ∈

⋃
L \ {σ}} : then

6: [n = τ
||

i ∧ ∀l ∈ {i−ws, . . . , i− 1} : [σl = τ||l]] then
7: % Record negative event at position i in trace σ for activity n:
8: N :=N∪ {(σ, i,n)}
9: end if

10: end for
11: end for
12: end for
13: % The negative events inN are inserted in L according to probability π
14: returnN

Figure 2.4 illustrates how in an event log of two traces σ and τ arti�cial events
can be generated. Note that history dependent processes generally will require
a larger window size to correctly detect all non-local dependencies. In Figure 2.4
for example, an unlimited window size is used. Should the window size be limited
to 1, it would no longer be possible to take into account the non-local dependency
between activity pairs b–f and c–g. This underlines the tradeo� as discussed be-
fore in the introduction. Using a higher window size leads to the generation of more
valuable negative events (either for discovery and evaluation purposes), that is,
negative events derived from non-local dependencies. On the other hand, using
an increased window also leads to a more strict completeness assumption, so that
candidate negative events are less likely to be disproved, leading to the possible in-
troduction of incorrect negative examples. The improvements presented hereafter
aim to tackle this tradeo�, by making the completeness assumption more con-
�gurable and by introducing a number of techniques which allow to generate a
set of negative events which is more likely to be both correct and complete.

42 2.2. PRELIMINARIES

Given:
σ 〈a,b,d, e, f,h〉
τ 〈a, c, e,d,g,h〉

Parallel(d, e)

Parallel variants:
σ|| 〈a,b,d, e, f,h〉
σ|| 〈a,b, e,d, f,h〉
τ|| 〈a, c, e,d,g,h〉
τ|| 〈a, c,d, e,g,h〉

Negative events:
σ a b d e f h

b a a a a a

d d b b b b

e e e∗∗ d d d

f f f f e e

h h h h h f

c g c c c c

g g g g∗ g

τ a c e d g h

b a a a a a

d d b b b b

e e d∗∗ e d d

f f f f e e

h h h h f∗ f

c g c c h c

g g g c g

*: Negative events based on non-local dependencies.
**: Incorrectly generated negative events.

a
b

c d

e f

g
h

Figure 2.4: Generating arti�cial negative events for an event log with two traces.

CHAPTER 2. IMPROVED ARTIFICIAL NEGATIVE EVENT INDUCTION 43

2.3 Improvements

In this section, we present a number of improvements and modi�cations in or-
der to create an arti�cial negative event generator to enhance process logs with
negative event examples. We aim to make the completeness assumption more
con�gurable and the generation procedure more robust so that the introduction
of falsely induced negative events in cases where an event log does not capture all
possible behavior is prevented (correctness), while also remaining able to derive
“non-trivial” negative events, that is, negative events following from complex
structural behavior (completeness).

We describe four extensions in this section. First, we start by introducing some
new frequent temporal and structural constraints which will be used by subse-
quent extensions, and we modify the Ordering and ChainSeq temporal as-
sociation rules so that the detection of these patterns is no longer sensitive to
the frequency of occurrence of a particular activity type in the event log. Sec-
ond, we show that the original window size parameter does not su�ce to counter
complexity caused by recurrent behavior (loops) and thus extend the variant cal-
culation technique to also include variants based on loops which are discovered
in the event log. Since processes can combine concurrent and recurrent behav-
ior in a complex manner, it is possible that not all variants can be calculated, or
that generating all variants becomes computationally infeasible, due to the recur-
sive and exponential nature of the problem. Therefore, the third improvement
introduces a dynamic window, to make the disprove procedure for a candidate
negative event more strict. Using this dynamic window with a window size of 1
weakens the completeness assumption to that of the α-algorithm—meaning that
an event log which contains every possible binary sequences of activities some-
where in its traces su�ces to generate a fully correct set of negative events, even
when no parallel or looped variants are calculated. Finally, we introduce a tech-
nique to generate negative events without performing a similarity check between
traces in the event log, by relying only on discovered activity type dependency
information.

2.3.1 Improvement 1: Revised Temporal Constraint Con�dence
Measures

We rede�ne theOrdering andChainSeq temporal association rules so that the
detection of these patterns is no longer sensitive to the frequency of occurrence

44 2.3. IMPROVEMENTS

of particular activity types. The temporal constraints describing Ordering and
ChainSeq are rede�ned as follows:

Ordering(a,b,σ) ⇐⇒ ∀σi,σj ∈ σ,σi = a,σj = b : [j = i+ 1]
ChainSeq(a,b,c,σ) ⇐⇒ (∀σi ∈ σ,σi = c : [σi−1 = b∧σi−2 = a])∨

(∀σi ∈ σ,σi = b : [σi−1 = a∧σi+1 = c])∨

(∀σi ∈ σ,σi = a : [σi+1 = b∧σi+2 = c])

The corresponding association rules are now:

Ordering(a,b) ⇐= ∀a,b ∈AL : [Conf(Existence(1,a,σ)∧
Existence(1,b,σ)
→Ordering(a,b,σ),L) > tsuccession]

ChainSeq(a,b,c) ⇐= ∀a,b,c ∈AL : [Conf(Existence(1,a,σ)∨
Existence(1,b,σ)∨Existence(1,c,σ))
→ ChainSeq(a,b,c,σ),L) > ttriple]

We also de�ne the following additional temporal constraints:

Iteration(n,υ,σ) ⇐⇒ υ ⊆ σ∧ ∃σt ∈ σ : [

∀i ∈ {1, . . . , |υ|}, j ∈ {1, . . . ,n} : [σt+i+j|υ| = υi]]

StartActivity(a,σ) ⇐⇒ σi = a
EndActivity(a,σ) ⇐⇒ σ|σ| = a

With the corresponding association rules:

Iteration(n,υ) ⇐= ∀υ ⊆ σ,σ ∈ L,n = 2, 0 < |υ| 6 3 : [
Conf(∀υi ∈ υ : Existence(1,υ,σ)
→ Iteration(n,υ,σ)) > titeration]

StartActivity(a) ⇐= ∀a ∈AL : [Conf(Existence(1,a,σ)
→ StartActivity(a,σ)) > tposition]

EndActivity(a) ⇐= ∀a ∈AL : [Conf(Existence(1,a,σ)
→ EndActivity(a,σ)) > tposition]

The Iteration temporal constraint holds in a sequence σ if a subsequence υ iter-
ates n times in σ. In order to keep to number of computations under control, we

CHAPTER 2. IMPROVED ARTIFICIAL NEGATIVE EVENT INDUCTION 45

limit the discovery of iterations to length 3 and less, which repeat for minimally
2 times; n = 2 and 0 < |υ| 6 3.

2.3.2 Improvement 2: Variant Calculation with Loop Discovery

The Iteration temporal constraint as de�ned in the previous section allows us
to formulate a loop discovery heuristic. Loops, however, cannot immediately be
derived from the set of Iteration temporal constraints. To see why this is the
case, consider the sequence 〈a,b,c,d,b,c,d,b,c,d,e〉. The following Iteration
constraints hold in this sequence: Iteration(2, 〈b,c,d〉), Iteration(2, 〈c,d,b〉)
and Iteration(2, 〈d,b,c〉). Since we are only concerned with the loop following
from the �rst Iteration constraint, with the start activity in the correct, �rst
position, we de�ne Loop(υ) as such:

Loop(υ) ⇐= ∀υ ⊆ σ,σ ∈ L : [Iteration(2,υ)∧ ∃a ∈AL : [Local(a,υ1)]]

Based on the Loop constraints, the variant calculation method can be extended
to take recurrent behavior into account as well, next to concurrent behavior.
Figure 2.5 depicts an example of the generation of loop variants. The variant
construction method works as follows: for each activity in a trace σ, it is inves-
tigated whether it is possible to insert additional or new loop iterations at this
position (by looking at discovered Local and Loop constraints), and whether
already present loop iterations can be removed. Since the addition of loop itera-
tions could potentially lead to in�nitely long sequences, some additional param-
eters have to be de�ned to guide to construction of loop variants. Firstly, in the
case of inserting additional loop iterations, a parameter loopAddUntil de�nes
the upper limit for the number of iterations in each loop. Setting this parameter
to unlimited does not lead to generation of in�nitely long sequences, but only
adds enough iterations of each loop to each sequence so that for every candidate
negative event considered, a loop variant trace can always be found where the
window to be checked always contains loop iterations which could occur up un-
til that point. Furthermore, a boolean parameter loopAddFromZero governs if
loop iterations are to be added at insert positions where no iterations of the con-
sidered loop are yet present. Secondly, for the removal of iterations, a parameter
loopRemoveUntil de�nes the lower limit for the number of iterations in each
loop. Setting this parameter to zero completely removes loops where possible. A
large number of variants can often be calculated for given sequences in an event

46 2.3. IMPROVEMENTS

Given:
σ 〈a, c, f〉

Local(a,b)
Local(c,d)
Loop(b)
Loop(d, e)
MinLoopOccurrence(0,b)
MinLoopOccurrence(0,d, e)
MaxLoopOccurrence(3,b)
MaxLoopOccurrence(2,d, e)

Loop variants:
σo 〈a, c, f〉
σo 〈a,b, c, f〉
σo 〈a,b,b, c, f〉
σo 〈a,b,b,b, c, f〉
σo 〈a, c,d, e, f〉
σo 〈a,b, c,d, e, f〉
σo 〈a,b,b, c,d, e, f〉
σo 〈a,b,b,b, c,d, e, f〉
σo 〈a, c,d, e,d, e, f〉
σo 〈a,b, c,d, e,d, e, f〉
σo 〈a,b,b, c,d, e,d, e, f〉
σo 〈a,b,b,b, c,d, e,d, e, f〉

a b

c d
e

f

Figure 2.5: Calculating loop variants for a trace based on derived structural information.

log, leading to a higher number of traces which will be used when evaluating a
negative event, thus resulting in less incorrect cases.

Note that, instead of having to specify a value for loopAddUntil and loop
RemoveUntil manually, it is also possible to set these values based on the
minimum and maximum number of subsequent iteration occurrences within
a sequence for each discovered loop. As such, for each discovered Loop(υ)
constraint, we can also de�ne corresponding MinLoopOccurrence(i,υ) and
MaxLoopOccurrence(j,υ) constraints. The advantage of using this informa-
tion for the calculation of loop variants is that each distinct loop can now be
grown or shrunk according to the real behavior present in the log (instead of us-
ing global parameters over all loops), but note that this makes the completeness
assumption more strict in the sense that the minimum and maximum possible
iterations of each loop should indeed be present in the given event log.

Figure 2.6 depicts an example in order to demonstrate the usefulness of loop
variant calculation when generating negative events. Although the window size

CHAPTER 2. IMPROVED ARTIFICIAL NEGATIVE EVENT INDUCTION 47

parameter has been set to 1 for the generation of negative events in order to han-
dle recurrent behavior, incorrect cases are still introduced in the event log due
to the strict position comparison between the window of the positive trace at
hand and the window of the trace used to disprove the negative event currently
under consideration, denoted by n = τ

||
i in Algorithm 2.1. It is this strict com-

parison which causes the interesting dissimilarity in the set of negative events
for σ and τ in Figure 2.6: whereas σ does not include b as a negative event in the
previous-to-last position (at the position of activity c), τ does falsely introduce b
as a negative example at the position of activity d, due to the di�erence in lengths
of the two sequences caused by the loop. Furthermore, the original algorithm is
not able to discover the recurrent behavior in the underlying process, leading to
the rejection of completion of c and d at each position where b occurs. Using
the loop variant calculation explained above avoids the generation of these incor-
rect cases. Moreover, it is no longer required to use the lowest possible window
(size 1), so that non-local, history-dependent behavior—if present—can again be
captured by the generated negative events.

Finally, note that the generation of incorrect examples is yet not completely
avoided when using loop variant calculation in the example of Figure 2.6. σ,
for example, still rejects the completion of c activities after the completion of
a. This is not due to a particular intricacies of loop calculation (indeed, similar
behavior can be seen in Figure 2.4) for the parallel variants, but rather to the
following condition in Algorithm 2.1: λ ∈ ⋃L \ {σ}. This condition prohibits
variants of the current positive trace under consideration (σ) to be used as a dis-
proving trace for a particular candidate negative event. As such, we are able
to introduce a boolean parameter useOwnTrace, leading to the removal of all
incorrect negative events.

48 2.3. IMPROVEMENTS

Given:
σ 〈a,b,b, c, e〉
τ 〈a,b,b,b,b,d, e〉

Loop(b)

Negative events:
σ a b b c e

b a a a a

c c∗ c∗ d∗† b

d d∗† d∗† e c

e e e d

τ a b b b b d e

b a a a a a a

c c∗† c∗† c∗† c∗† b∗† b

d d∗ d∗ d∗ d∗ c∗† c

e e e e e e d

*: Incorrectly induced negative events without using loop
variant calculation, with window size = 1.
†: Incorrect negative events that are no longer present when
using loop variant calculation.

a

b

c

d
e

Figure 2.6: Generating arti�cial events for an event log containing recurrent behavior.
Without the loop variant calculation extension, incorrect negative events are introduced
in the event log, even although the window size parameter is set to 1.

2.3.3 Improvement 3: Dynamic Windows

Even when both parallel and loop variants are considered, incorrect negative
events could still be induced, even when using the smallest possible window size
of length 1. The following reasons can explain this statement. Firstly, when gen-
erating loop variants, we have only considered loops with a maximum length of
3. Although it is possible to adjust this parameter so that longer loops can be
discovered, the number of checks which have to be performed rises dramatically
when increasing this parameter. Secondly, even when longer loops are looked
for, potential loops might still remain undiscovered due to the possible recursive
nature of parallel and loop constructs. Consider for example the loop 〈a,B,d〉,
with B a subsequence containing a parallel construct composed of activities b
and c, leading to the following possible complete sequence: 〈start,a,b,c,d,a,

CHAPTER 2. IMPROVED ARTIFICIAL NEGATIVE EVENT INDUCTION 49

c,b,d,a,b,c,d,a,c,b,d,end〉. Even in the case when we adjust the discovery of
temporal constraints to mine Iteration constraints with length 4, the loop in
the sequence above will never be discovered, since the concurrency construct
causes neither the 〈a,b,c,d〉 or 〈a,c,b,d〉 subsequences to repeat two times in
a sequential manner. The same problem exists when loops are nested. Thirdly,
even when all constructs could be detected—or given—the generation of variants
still remains an exponentially complex problem, meaning that a rise in a num-
ber of concurrency or recurrence constructs more than proportionally increases
the number of variants which can be generated, especially when considering
the possibility that parallel variants could be calculated for previously calculated
loop variants, loop variants for previously calculated parallel variants, and so on,
making the variant generation method a recursive problem as well.

Instead of trying to deal with the above problems by adjusting the Loop and
Iteration constraints to take into account concurrency, we limit the variant
calculation to the simple heuristics as described above, with a maximum loop
detection length of 3, and a variant calculation scheme where the parallel variants
are calculated �rst and loop variants are generated afterward over this set; AV :

σ ∈ L 7→ {τ ∈ LV(κ)|κ ∈ PV(σ)} with PV : σ ∈ L 7→ PVσ a function which
returns the set PVσ containing all parallel variants of a trace, and with LV : σ ∈

L 7→ LVσ a function which returns the set LVσ containing all recurrent variants
of a trace. To deal with the problem of complex constructs leading to possible
incorrect negative events, we adjust the window based comparison algorithm to
remove the strict position requirement: n = τ

||
i in Algorithm 2.1. Instead, we

compare the window of the original “positive” trace with each possible window
in the “candidate disproving” trace, now denoted as τ∼, meaning each sequence
of events before an event with activity type equal to the activity type of the
current candidate negative event under consideration. An example can clarify
this principle. Consider the positive trace σ = 〈a,b,c,d, f〉 and τ∼ = 〈a,b,c,b,c,
e, f〉 a candidate disproving trace under consideration. Assume we are currently
checking to see if candidate activity e could also occur instead of d (i.e. σ4) in σ.
In cases where a strict window is used, with size equal to, say, 2, the candidate
disproving trace τ∼ fails to disprove the negative event, since t∼4 6= e. Instead of
doing so, we now compare the window 〈b,c〉 in σ with each possible window in
τ∼. In this case, the window of size 2 before activity τ∼6 = e in τ∼ is also equal
to 〈b,c〉. This leads to a correct rejection of the candidate negative event. The
complete modi�ed algorithm using a dynamic window is listed in Algorithm 2.2.

Note that, depending on the window size con�gured, cases might now exist
where the size of the window in the original trace σ is unequal to the size of

50 2.3. IMPROVEMENTS

Algorithm 2.2 Arti�cial negative event generation algorithm—with dynamic
window approach.
Input: An event log L
Input: Window size parameterws and minimum windows size parametermws
Input: Boolean parameter useOwnTrace
Input: Con�guration for variant generating function AV (generate loops yes/no, generate parallel variants

yes/no, max loops, min loops, add loops from zero length)
Output: A setN of induced arti�cial negative events

1: N := ∅
2: for all σ ∈

⋃
L do

3: for all σi ∈ σ do
4: for all n ∈AL \σi do
5: L′ :=

⋃
L

6: if useOwnTrace then
7: L′ := L′ \ {σ}
8: end if
9: if @τ ∈ {τ ∈ AV(λ)|λ ∈ L′ : [∃τj ∈ τ : [τj = n ∧ ((minws >= j − 1) ∨

(minws = −1∧ j >= i))∧ ∀l ∈ {1, . . . ,ws} : [σi−l = τj−l]]] then
10: % Record negative event at position i in trace σ for activity n:
11: N :=N∪ {(σ, i,n)}
12: end if
13: end for
14: end for
15: end for
16: % The negative events inN are inserted in L according to probability π
17: returnN

a window in a candidate disproving trace τ∼. In cases where the window in τ∼
is larger than the window in σ, an e�ective window with size equal to the win-
dow used in σ is used. When the window in τ∼ is smaller than the window in
σ, using the smallest window could potentially lead to the rejection of negative
events, even when a high window size parameter was set. An example can help
to illustrate this. Consider again the positive trace σ = 〈a,b,c,d, f〉 and τ∼ = 〈a,
b,c,b,c,e, f〉 the candidate disproving trace under consideration. Assume now
we are currently checking to see if candidate activity b could also occur instead
of d in σ. Based on this information, two windows can be de�ned in τ∼ which
can serve to check the validity of the candidate negative event at hand: 〈a〉 and
〈a,b,c〉. For the latter, no problem exists, as this window is as long as the win-
dow 〈a,b,c〉 in σ. On the other hand, the other window (〈a〉) is smaller than the
window in σ, and thus the similarity check between these two windows might
di�er from the actual window size parameter which was con�gured by the user.
Although this can never lead to the generation of additional incorrect negative
events, it can lead to skipped generation of additional correct negative events,
so that we de�ne a parameter minws to denote a minimum required length for
a window to be used in the negative event rejection procedure. This parameter
can be con�gured so that the window in τ∼ should be at least the same size as
the current window in σ.

CHAPTER 2. IMPROVED ARTIFICIAL NEGATIVE EVENT INDUCTION 51

Using a dynamic window now allows us to dramatically weaken the complete-
ness assumption made by the arti�cial negative event generation process. Using
a dynamic window with size 1 indeed assumes only that each binary sequence of
two activities is somewhere present in the given event log, or can be generated
from the given event log using parallel and loop variant calculation as described
above. This weakens the completeness assumption equal to the one made by the
formal α-miner learner.

Finally, remark the absence of a “forward window”; we only consider the history
of completed events when investigating which activities could not be completed
at a certain point in the process instance. The reason for this is straightforward:
at the time of investigating a current state transition, the future of the process
instance at hand is still unknown. Therefore, only historical facts can be consid-
ered in the negative event generation process.

2.3.4 Improvement 4: Dependency Based Negative Event Gener-
ation

Instead of using a window-based trace comparison algorithm, an alternative way
of generating arti�cial negative events is to directly use the discovered structural
information from the temporal frequent constraints and association rules. Local-
ity, (long-distance) dependency and implicit dependency information can thus be
applied towards the induction of negative events.

2.3.4.1 Locality (or: Explicit Dependencies)

It is possible to generate negative events based on locality information (i.e. ex-
plicit dependencies). As a rule of thumb, negative events with a certain activity
type can be added before a given completed event in a process instance when this
activity type is not locally dependent on the activity type of the event completed
at the previous position:

N :=N∪ (σ, i,a) ⇐= ∀a ∈AL,σ ∈ L : [∀σi ∈ σ,σi 6= a : [∼ Local(σi−1,a)]]

Instead of using ChainPrec(a,c)∨ChainResp(a,c) in the derivation rule for
Local, we can also de�ne a StrongLocal variant using ChainPrec(a,c) ∧

52 2.3. IMPROVEMENTS

ChainResp(a,c) instead. Using StrongLocal instead of Local in the rule
above leads to a weaker check before generating a negative event, since, in most
cases, less StrongLocal constructs can be discovered than Local. Recall also
that the construction of Local predicates takes parallelism information into ac-
count.

2.3.4.2 Long-Distance (with: Implicit) Dependencies

We de�ne the following structural derivation rules to mine all dependencies be-
tween activity types (both implicit and explicit), similar to Local (explicit de-
pendencies only):

∀a,b ∈AL :(Precedence(a,b)∨Response(a,b))∧ ∼ Parallel(a,b)
=⇒ Dependence(a,b)

∀a,b ∈AL :(Precedence(a,b)∧Response(a,b))∧ ∼ Parallel(a,b)
=⇒ StrongDependence(a,b)

Based on these dependencies, the rule of thumb de�ned above can be expanded.
Even negative events with a certain activity type that is locally dependent on
the activity type of the event completed at the previous position can be added
before a given completed event, so long as not all activities on which the negative
event under consideration is strongly dependent (StrongDependence) on were
completed before, or so long as no single activity on which the negative event
under consideration is dependent on (Dependence) has completed before.

N :=N∪ (σ, i,a) ⇐= ∀σ ∈ L,a ∈AL : [∀σi ∈ σ,σi 6= a : [

∃b ∈AL,b 6∈ 〈σ1, . . . ,σi−1〉 : [
StrongDependence(b,a)]]]

N :=N∪ (σ, i,a) ⇐= ∀σ ∈ L,a ∈AL : [∀σi ∈ σ,σi 6= a : [

@b ∈AL,b ∈ 〈σ1, . . . ,σi−1〉 : [
Dependence(b,a)]]]

Finally, we can also use the StrongDependence construct to suggest an op-
timal minimum window size, i.e. a window size which is able to capture pairs
of activity types between which an implicit (long-distance) dependency relation
exists. To do so, we need to restrict StrongDependence a bit further to drop
strong dependencies which do not correspond with an implicit dependency in

CHAPTER 2. IMPROVED ARTIFICIAL NEGATIVE EVENT INDUCTION 53

the underlying process model. For example, a StrongDependence construct
can always be found between starting and ending activities. However, a start-
ing activity is always followed by the ending activity, so that this dependency
is not an implicit one. Deriving a window size from this construct would lead
to a useless suggestion, as this would give the same result as when using an
unlimited window. Therefore, we restrict our search to unique strong dependen-
cies (derived with the UniqueStrongDependence rule below) where activity
types are strongly dependent on one other activity type only, which is a good
indication for the presence of an implicit dependency.

∀a,b ∈AL : [StrongDependence(a,b)∧ @c ∈AL,c 6= a : [

StrongDependence(c,b)]] =⇒ UniqueStrongDependence(a,b)

A suggestion towards a window size can then be given by:

wssuggested :=Maxa,b∈AL:UniqueStrongDependence(a,b)(

Minσ∈L,σi ,σj∈σ:[σi=a,σj=b,i<j](i− j))

Note that, when sequences are present in the event log which contain multiple
events corresponding to the same activity type (e.g. for process models contain-
ing loops), (i− j) is computed such that the resulting di�erence between the two
events is minimal but greater than zero.

2.4 Experimental Results

We have implemented our revised arti�cial negative event generation technique
in ProM 6. We test the improvements above with the driversLicenseLoop event
log, an arti�cial process log which has been used before by Alves de Medeiros
et al. [66] to evaluate the Genetic Miner discovery algorithm, and by Goedertier
et al. [2] as a testcase for AGNEsMiner. The driversLicenseLoop process is in-
teresting, since it contains parallelism, recurrence, duplicate tasks and implicit
dependencies. To compare the di�erent settings of the arti�cial event generation
algorithm, a process log containing 350 process instances was used (|L| = 350,
|
⋃
L| = 87, |AL| = 11). Figure 2.7 depicts the underlying Petri net for the driver-

sLicenseLoop process, for illustrative purposes.

Table 2.1 lists the various parameter con�gurations used to evaluate the arti�-
cial event generation technique. For each of the con�gurations, all generated

54 2.4. EXPERIMENTAL RESULTS

start

applyForLicense

applyForLicense

attendClassesCarsattendClassesMotorBikes

obtainInsurancedoTheoreticalExam

doPracticalExamCarsdoPracticalExamMotorBikes

getResult

receiveLicense

end

end

Figure 2.7: The driverseLicenseLoop process.

CHAPTER 2. IMPROVED ARTIFICIAL NEGATIVE EVENT INDUCTION 55

Table 2.1: Used parameter setting con�gurations for the arti�cial event generation tests.

Parameter Configuration
Identifier

Window
Generation

Window
Size

Dynamic
Window

Minimum
Window

Size

Structural
Generation

originalWs-1 yes -1 no – no
originalWs3 yes 3 no – no
originalWs1 yes 1 no – no

dynamicWs-1MinWs-1 yes -1 yes -1 no
dynamicWs3MinWs-1 yes 3 yes -1 no
dynamicWs1MinWs-1 yes 1 yes -1 no
dynamicWs-1MinWs1 yes -1 yes 1 no
dynamicWs3MinWs1 yes 3 yes 1 no
dynamicWs1MinWs1 yes 1 yes 1 no

strucOnly no – – – yes
strucNonDynamicWs-1 yes -1 no – yes
strucNonDynamicWs3 yes 3 no – yes
strucNonDynamicWs1 yes 1 no – yes

strucDynamicWs-1MinWs-1 yes -1 yes -1 yes
strucDynamicWs3MinWs-1 yes 3 yes -1 yes
strucDynamicWs1MinWs-1 yes 1 yes -1 yes
strucDynamicWs-1MinWs1 yes -1 yes 1 yes
strucDynamicWs3MinWs1 yes 3 yes 1 yes
strucDynamicWs1MinWs1 yes 1 yes 1 yes

negative events were introduced in the given event log. The “Window Gen-
eration” parameter denotes the use of window based arti�cial negative event
generation, “Window Size” denotes the size of the window, “Dynamic Win-
dow” denotes the use of the dynamic window improvement with a minimum
required window size “Minimum Window Size”. “Structural Generation” de-
�nes if dependency based arti�cial negative event generation is performed, ei-
ther on its own (“strucOnly”), or together with window based negative event
generation (“strucNonDynamicWs-1” and following are obtained by merging a
window based generated set of negative events with the set of negative events
obtained from “strucOnly”). We use window sizes -1 (unlimited), 3 (suggested by
wssuggested) and 1 (most limited) to test the event generation procedure. When
a dynamic window is used, we use both -1 (candidate disprove window must be
as long as window in positive trace) and 1 (no e�ective minimum) as required
minimum window values. “Original” con�guration identi�ers correspond with
a parameter setting which could be obtained with the original version (i.e., no
improvements) of the arti�cial event generation algorithm.

Table 2.2 gives the results for each of the above de�ned parameter setting con�g-
urations. We compare the results for the various parameter con�gurations with
two given sets of negative events. A “naive generation method” constructs a set
of negative events by injecting at each position in a trace a negative event for
each activity type, except the activity type equal to the (completed) event at the
current position, i.e. ∀σ ∈ L : [∀σi ∈ σ : [∀a ∈ AL \ {σi} : [Nn :=Nn ∪ (σ, i,a)]]].

56 2.4. EXPERIMENTAL RESULTS

Note that even when this naive method is used, the number of incorrect nega-
tive events in respect to the total negative events is rather low. This is in fact
a good indication towards the fact that the given event log gives a good cover-
age of all possible execution traces as allowed by the underlying process model.
The “Fully Correct Log” was constructed based on the given Petri net used to
simulate the drivers license process (Nc). Of course, in real-life cases, such a
reference model is unavailable, preventing the construction of a fully correct set
of negative events by which the arti�cial induction results can be evaluated. For
each parameter con�guration, we calculate the correctness and completeness ra-
tio. Correctness is de�ned as one minus the ratio of incorrect negative events to
the number of incorrect negative events generated by the naive method. Com-
pleteness is de�ned as the ratio of correct negative events over the full num-
ber of possible, correct negative events, as given by the fully correct log, i.e.
correctness = 1− Nincorrect

Nincorrectn
and completeness = Ncorrect

Ncorrectc
.

The following conclusions can be derived from the results. First, the inherent
trade-o� between correctness and completeness becomes apparent here, as most
con�gurations show an inverse relation between the two requirements. Second,
we note that no single window size con�guration is able to generate a set of neg-
ative events which is both correct and complete when using the original version
of the arti�cial event generation algorithm. Next, using a strict window size (1)
in combination with the dynamic window improvement leads to a set of negative
events which is fully correct, albeit not complete. Constructing a set of negative
events which is both complete and correct is possible if the window size is in-
creased to 3 (suggested by investigating the structure of implicit dependencies—
denoted in bold case in Table 2.2), or by using non-window dependency based
generation, which also leads to an acceptable completeness value (98%). More-
over, using dependency-based generation ensures the addition of “non-trivial”
negative events, derived from implicit dependencies, which proves especially
helpful in a later phase when the set of negative events is used for evaluation
or discovery tasks. The results also deal with another concern: even although
we have de�ned a large number of parameters, two straightforward, well per-
forming defaults can be suggested: either apply window based generation with
a dynamic window of size 1 in conjunction with dependency based event gener-
ation, or only apply window based generation with a window size equal to the
suggested window size.

CHAPTER 2. IMPROVED ARTIFICIAL NEGATIVE EVENT INDUCTION 57

Table 2.2: Results of the driversLicenseLoop experiment under various con�gurations.

Parameter Configuration
Identifier

Incorrect
Negative Events

Total Negative
Events Correctness Completeness

Fully Correct Log 0 44866 100% 100%
Naive Generation Method 2484 47350 0% 100%

originalWs-1 642 45508 74,2% 100%
originalWs3 621 45487 75,0% 100%
originalWs1 621 44866 75,0% 98,6%

dynamicWs-1MinWs-1 642 45508 74,2% 100%
dynamicWs3MinWs-1 0 44866 100% 100%

dynamicWs1MinWs-1 0 42382 100% 94,5%
dynamicWs-1MinWs1 642 45508 74,2% 100%

dynamicWs3MinWs1 0 44866 100% 100%
dynamicWs1MinWs1 0 42382 100% 94,5%

strucOnly 0 40469 100% 90,2%
strucNonDynamicWs-1 642 45508 74,2% 100%
strucNonDynamicWs3 621 45487 75,0% 100%
strucNonDynamicWs1 621 45349 75,0% 99,7%

strucDynamicWs-1MinWs-1 642 45508 75,2% 100%
strucDynamicWs3MinWs-1 0 44866 100% 100%

strucDynamicWs1MinWs-1 0 43969 100% 98,0%
strucDynamicWs-1MinWs1 642 45508 74,2% 100%

strucDynamicWs3MinWs1 0 44866 100% 100%
strucDynamicWs1MinWs1 0 43969 100% 98,0%

2.5 Conclusions

Process mining analysis tasks are often confronted with some particular di�-
culties. One such di�culty is that process mining is commonly limited to the
harder setting of unsupervised learning, since negative information about state
transitions that were prevented from taking place (i.e. negative events) is often
unavailable in real-life event logs and consequently cannot guide the learning
tasks. In this chapter, we have outlined a �rst extension for the negative event
generation method as �rst introduced in the AGNEsMiner process discovery al-
gorithm [2]. Generating a robust set of negative events boils down to �nding an
optimal set of negative examples under the counteracting objectives of correct-
ness and completeness. Correctness implies that the generation of false negative
events has to be prevented, while completeness entails the induction of “non-
trivial” negative events, that is, negative events which are based on constraints
imposed by complex structural behavior, such as non-local, history-dependent
constructs. The existence of the tradeo� between these two goals is due to the
completeness assumption made over an event log when generating arti�cial neg-
ative events. In the original version of the algorithm, a con�gurable complete-
ness assumption is de�ned by proposing a window size parameter and a neg-
ative event injection probability. We presented several improvements to make
this con�gured completeness assumption less strict and the arti�cial event gen-
eration procedure more robust in order to prevent the introduction of falsely

58 2.5. CONCLUSIONS

induced negative events in cases where an event log does not capture all possi-
ble behavior. Ensuring a correct induction of negative events proves especially
helpful in practice when these events are subsequently used for evaluation pur-
poses. The improvements entail: �rstly, new de�nitions for temporal constraint
con�dence measures; second, a variant calculation technique based on recurrent
behavior (short loops); third, a rede�nition of the window based trace similarity
check; fourth, the de�nition and appliance of a negative event score value which
makes the tradeo� between completeness and correctness explicit; �nally, the
appliance of non-window based negative event generation techniques, based on
discovered dependency information. By means of an experiment on an arti�cial
log, we illustrate the bene�ts of the proposed improvements.

This �rst approach already o�ers a more robust method towards inducing arti-
�cial negative events, although some problem still remain. First, the induction
procedure is slow, due to the fact that the whole (distinct) event log is iterated
upon, the time-consuming steps of deriving temporal and structural information,
and the exponential complexity nature of parallel and recurrent variant genera-
tion. Second, end-users are required to supply a number of parameters to drive
the induction process, forcing the make an assumption about the degree of com-
pleteness of the given event log, which is not always known up-front. Third,
negative events are induced or not, whereas it would be better to assign some
degree of “con�dence” to their existence.

In the next chapter, we will set forth towards solving these issues, as well as
developing an application of arti�cial negative events in the form of a compre-
hensive conformance checking framework.

59

Chapter 3

Conformance Checking with Weighted
Arti�cial Negative Events

“A foolish consistency is the hobgoblin of little minds.”
– Ralph Waldo Emerson

3.1 Introduction

In this chapter, we will develop a novel conformance checking framework based
on the concept of arti�cial negative events. Recall from the introductory chapter
that conformance checking pertains to the mining task where existing process
models are compared with the real-life behavior as captured in event logs so as to
measure how well a process model performs with respect to the actual executions
of the process at hand [100]. As such, the “goodness” of a process model is typ-
ically assessed over the following four quality dimensions [47, 124]: �tness (or:
recall, sensitivity), indicating the ability of the process model to correctly replay
the observed behavior; precision (or: appropriateness), i.e. the model’s ability to
disallow unwanted behavior; generalization, which indicates the model’s ability
to avoid over�tting; and �nally, simplicity (or: structure, complexity, compre-
hensibility), stating that simpler process models should be preferred above more
complex ones if they are able to �t the observed behavior just as well, thus em-
bodying the principle of Occam’s Razor.

60 3.2. PRELIMINARIES

Our approach o�ers the following contributions. First, we develop and apply
a signi�cantly improved arti�cial negative induction strategy, based on the ap-
proach developed in the previous chapter, but extending it with a novel weighting
method which tackles the problems of scalability and the requirement of end-
user knowledge regarding the level of log completeness. Second, the concept of
weighted arti�cial negative events is used as the basis for two new conformance
checking metrics: Weighted Behavioral Precision and Weighted Behavioral Gen-
eralization. Most existing literature has focused on the �tness and precision of
process models, whereas the ability to generalize has been much more di�cult
to estimate or describe. Our method is able to assess both precision and general-
ization, taking into account the inherent tradeo� between these two dimensions
in an explicit manner for the evaluation of process models. Third, we discuss
in depth the problem of replaying event sequences on Petri nets for sequences
containing both positive and negative events. We also identify some important
remarks concerning Petri net replay methods when checking precision and gen-
eralization. Fourth and �nally, all described algorithms were implemented in a
number of ProM plugins; a Petri net conformance checking tool was developed
to inspect model quality, conformance and deviations in a visual manner.

3.2 Preliminaries

This chapter will use the de�nition of an event log, Petri net, and Petri net ex-
ecution semantics as given by the introductory chapter. Recall in particular our
comment regarding the construction of a �ring sequence through transitions in
a Petri net to match a given trace from an event log. We have stated that it is
possible that multiple �ring sequences can be found to replay a trace. When a
�ring sequence can be found for a trace so that all transitions can be �red se-
quentially without one of them being forced to �re, it is said that the trace �ts in
the Petri net (or: that the trace can be replayed correctly by the Petri net). Note
that replay is closely related to the �rst model quality dimension: �tness. That
is, Petri nets where a higher amount of traces contained in an event log can be
parsed by the net are preferred above nets which are less able to replay the traces
without force �ring transitions. For now, we will make abstraction of the exact
manner by which a �ring sequence can be constructed through a Petri net for a
given trace. It su�ces to assume that replaying a trace on a Petri net will result in
a single “best �tting” �ring sequence: that is, the �ring sequence containing the
least amount of force �red transitions (preferably none) and the least amount of

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 61

invisible transitions. Section 3.6.1 provides a thorough discussion on how such
a �ring sequence can be computed.

Figure 3.1 depicts an event log together with a set of process models to illustrate
the impact of the four quality dimensions, similarly as done in [124]:

perfectModel shows a high quality, “perfect” model: all traces contained in
the event log can be replayed by the model (�tness), the model does not
allow for extra behavior not found in the event log (precision), the model
does not over�t the event log (generalization) and is structurally simple
and easy to understand (simplicity).

singleModel represents only one “single path” from start to �nish. As such,
the model is very simple, has a high precision, but is not able to generalize.
In addition, only a small subset of traces can be replayed without force
�ring transitions, so that the �tness of this model is low as well.

�owerModel permits any sequence of transitions (between starting and
ending transitions). As such, �ower models are very simple, generalize
well and are able to �t all traces contained in the event log, but score low
on precision since a lot of additional behavioral not found in the event log
is allowed.

connectedModel is comparable to a �ower model with regards to the four
quality dimensions, except that here, a fully connected Petri net is used
with an abundance of invisible “routing” transitions in order to allow any
sequence of activities1, making the model much harder to understand.

stackedModel shows a model where each trace in the event log is modeled
as a separate path of transitions between the start and end place (remark
here the occurrence of duplicate transitions). Although well performing in
terms of �tness and precision, it is clear that this model heavily over�ts the
event log and is thus not able to generalize. In addition, the model is not
simple to interpret. Although the structural logic behind a stacked model
looks simple enough, �nding out which path should be followed in order
to replay a trace is more di�cult, especially during execution where the
future behavior of a process instance is very likely to be unknown at the
current point in time.

1The fully connected model may appear rather unrealistic. However, note that Causal nets [43],
another representational form for process models, may end up looking like connectedModel after
converting such models to Petri nets.

62 3.2. PRELIMINARIES

Multiplicity of σ Trace σ ∈ L
113 〈a,c,d,e,k〉
110 〈a,b, i,g,h, j,k〉
74 〈a,b,g, i,h, j,k〉
63 〈a,b,g,h, i, j,k〉
39 〈a,c,d, f,c,d,e,k〉
30 〈a,c,d, f,b, i,g,h, j,k〉
19 〈a,c,d, f,b,g, i,h, j,k〉
16 〈a,c,d, f,b,g,h, i, j,k〉
8 〈a,c,d, f,c,d, f,b,g,h, i, j,k〉
8 〈a,c,d, f,c,d, f,c,d,e,k〉
8 〈a,c,d, f,c,d, f,b, i,g,h, j,k〉
5 〈a,c,d, f,c,d, f,b,g, i,h, j,k〉
3 〈a,c,d, f,c,d, f,c,d, f,b, i,g,h, j,k〉
2 〈a,c,d, f,c,d, f,c,d, f,c,d,e,k〉
2 〈a,c,d, f,c,d, f,c,d, f,b,g,h, i, j,k〉

|L| = 500
|
⋃
L| = 15

h
j

e

i

f

c

a

b

k

d

g

perfectModel: Perfect Model
Fitness +, Precision +, Generalization +, Simplicity +

Figure 3.1: An event log exampleLog together with �ve process models. The process mod-
els illustrate the impact of the four quality dimensions: �tness, precision, generalization
and simplicity. Here, the event log and the perfectModel are shown.

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 63

a e kdc

singleModel: Single Path Model
Fitness -, Precision +, Generalization -, Simplicity +

Figure 3.1 (continued): The singleModel process model.

b e

f

dc

k

i h
g

a

j

�owerModel: Flower Model
Fitness +, Precision -, Generalization +, Simplicity +

Figure 3.1 (continued): The �owerModel process model.

b

i

k

j

g

a

e

f

h

c

d

connectedModel: Fully Connected Model
Fitness +, Precision -, Generalization +, Simplicity -

Figure 3.1 (continued): The connectedModel process model.

64 3.3. WEIGHTED ARTIFICIAL NEGATIVE EVENTS

a

b

... 12 other trace paths ...

a

a c

j

d

h

h

k

g

e

ig

k

k

j

b

i

stackedModel: Single Path Model
Fitness +, Precision +, Generalization -, Simplicity -

Figure 3.1 (continued): The stackedModel process model.

3.3 Weighted Arti�cial Negative Events

Our precision and generalization evaluation approach is based on the use of
weighted arti�cial negative events. Weighted arti�cial negative events extend
the concept of arti�cial negative events with a scoring mechanism in order to
make the evaluation of process models more robust as event logs become less
complete.

3.3.1 Rationale and Formalization

In the previous chapter, an improved arti�cial negative event generation strategy
was proposed which allows to con�gure the completeness assumption made over
a given event log in a more robust and �ne-grained manner. However, we have
stated that this approach still exhibits the following problems:

Scalability. The induction procedure is slow, due to the fact that the whole
(distinct) event log is iterated upon, the time-consuming steps of deriv-
ing temporal and structural information, and the exponential complexity
nature of parallel and recurrent variant generation.

Domain knowledge. Even although the completeness assumption was
made more con�gurable, end-users were still required to con�gure the
induction process.

Binary induction. Even when taking into account existing techniques to
estimate the completeness of a given event log without an a-priori known
process model [125, 126], which could be applied in order to guide the
arti�cial negative event generation algorithm, the problem still remains

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 65

Algorithm 3.1 Weighted arti�cial negative event generation algorithm.
Input: An event log L
Output: A setN of induced arti�cial negative events

1: function NE(σi) % Induce set of negative events
2: N := ∅
3: for all a ∈AL \ {σi} do
4: s := 1 % Score for this negative event
5: for all υ ∈ L do
6: for all υj ∈ υ|υj = a do
7: % Calculate unmatching window ratio
8: ws := i− 1 % Window size
9: mws := 0 % Matching window size

10: l := 1
11: while l <Min(i, j) − 1∧σi−l = υj−l do
12: mws :=mws+ 1
13: l := l+ 1
14: end while
15: uwr := ws−mws

ws
% Matching window ratio for this comparison

16: s :=Min(s,uwr)
17: end for
18: end for
19: % Negative event with activity a and weight s
20: N :=N∪ {(σ, i,a,s)}
21: end for
22: returnN
23: end function

that negative events would be either induced or not, without some kind of
strength or con�dence associated to their presence based on the structure
contained in the given log, which can be considered as being too coarse-
grained.

To resolve these issues, we propose a scoring method which can be used to weight
negative events in terms of their con�dence. That is, the higher the weighting of
a negative event, the less likely it is deemed that this negative event will be re-
futed by additional traces as generated by the real underlying, unknown process
and vice versa2. The calculation of this weight is done in the following manner
(formalized as a de�nition for function NE(σi) in Algorithm 3.1): we calculate
the score for a negative event with activity a ∈ AL\{σi}. For each trace υ con-
taining activity a at υj, the event window before υj is compared with the event
window before σi in the original trace σ in order to obtain the “unmatching win-
dow ratio”, i.e. the length of the unmatching window divided by the total window
length in σ, working backwards from σi and υj: |window|−|matching window|

|window| . Remark
that it is possible for a single trace υ to contain multiple activities equal to the
negative event under consideration, so that one trace can give rise to multiple
comparisons, and thus di�erent unmatching window ratios. Remark also that the
current σ ∈ L itself may also contain the activity for the candidate negative event

2“Non numerantur, sed ponclerantur,” as said by the great Paul Erdős.

66 3.3. WEIGHTED ARTIFICIAL NEGATIVE EVENTS

under consideration. Finally, to obtain the �nal weighting for a negative event,
the minimum unmatching window ratio is taken over all comparisons performed
(line 16): Min∀window comparisons(

|window|−|matching window|
|window|). To induce all weighted ar-

ti�cial negative events, function NE(σi) is called for each σi ∈ σ,σ ∈ L.

The weighting for each negative event can be summarized as follows: the longer
amatching pre�x can be found equal to the pre�x before the negative event under
consideration, the smaller the unmatching window will become and a lower weight
will be given to the negative event. A weighting of 0 (minimum) indicates that
a trace was found containing the same full pre�x as seen before the negative
event under consideration, indicating that this behavior in fact did occur and as
such cannot be supported at all as being disallowed (i.e. negative) behavior. A
weighting of 1 (maximum) indicates that there did not exist any trace where the
candidate negative event’s activity occurred and was preceded by a matching pre�x
(even of length 1). Strong evidence then exists that the behavior represented by
the candidate negative event should indeed be disallowed.

An example can help to clarify the weighting procedure:

σ
1 2 3 4 5
a b c (y?) x d

υ
1 2 3 4 5 6
e a f c y g

window: – – 6= = ←

.

Consider the trace σ ∈ L = 〈a,b,c,x,d〉; we wish to obtain the unmatching win-
dow ratio for a negative event, say y, inserted before σ4 = x by comparing the
window before σ4 (i.e.: 〈a,b,c〉, |window| = 3) with the window before υ5 in the
trace υ = 〈e,a, f,c,y,g〉, which is another trace in L that does contain event y.
The window in υ is thus: 〈e,a, f,c〉. These two windows (〈a,b,c〉 and 〈e,a, f,c〉)
are now compared as follows. We calculate the matching window length, start-
ing backwards from both windows. The �rst pair of events, σ3 = υ4 = c, are
indeed equal, so the matching window length is incremented with 1. The next
pair, (σ2 = b) 6= (υ3 = f), however, is not equal, so the comparison is ended at
this point, even though the next pair σ1 = υ2 = a is equal again. The unmatch-
ing window ratio for this result thus amounts to 3−1

3 = 0.66. The �nal weighting
for this negative event is obtained by taking the minimum unmatching window
ratio over all similar window comparisons which could be performed.

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 67

3.3.2 Scalability

The scalability of the weighted negative arti�cial event induction procedure as
described above is weak. The complexity of inducing all weighted arti�cial neg-
ative events in an event log L with Algorithm 3.1 can be expressed as follows:
O
(
(|L|× |µ|)× (|AL|)× (|L|× |µ|× |µ|)

). That is, for each trace in the event log
L, and for each position in that trace (|µ| is equal to the length of the longest
trace in the event log L and forms an upper bound for the number of positions
iterated), function NE(σi) is evaluated to induce the negative events for this
position, which considers each activity in AL as a candidate negative event. For
each such candidate event, the traces in the event log are iterated again together
with its activities, and a window comparison is performed whenever an activity
is encountered which is equal to the current candidate negative event (worst
case meaning every position in every trace with a maximum window length of
|µ|). This evaluates to O

(
|L|2 × |µ|3 × |AL|

). To deal with the problem of scal-
ability, we utilize Ukkonen’s algorithm [127] in order to construct a su�x tree
over the event log in order to quickly perform window lookups. As an exam-
ple, consider the trace 〈a,b,c,d,e, f,g〉. A su�x tree over this trace yields the
following retrievable su�xes: 〈a,b,c,d,e, f,g〉 (the trace itself), 〈b,c,d,e, f,g〉,
〈c,d,e, f,g〉, 〈d,e, f,g〉, 〈e, f,g〉, 〈f,g〉 and 〈g〉. Suppose now we want to �nd
the matching length for the window 〈x,c,d〉 (i.e. 2). As it stands, the su�x
tree does not contain an entry point for x and as such, the matching length is
deemed to be 0. One solution is to iterate over the trace and add the su�xes
of 〈a,b,c,d,e, f,g〉, 〈b,c,d,e, f,g〉, . . . , 〈g〉, but the more optimal and preferred ap-
proach is to construct the su�x tree over the reversed trace, i.e. 〈g, f,e,d,c,b,a〉
resulting in the following su�xes: 〈g, f,e,d,c,b,a〉, 〈f,e,d,c,b,a〉, 〈e,d,c,b,a〉,
〈d,c,b,a〉, 〈c,b,a〉, 〈b,a〉 and 〈a〉. To �nd the matching window length of
〈x,c,d〉, the window is traversed backwards so that now, 〈d,c〉 is found with
a length of 2. Observe that this reversal has the e�ect of losing the online prop-
erty of Ukkonen’s algorithm, but retains linear-time construction complexity.
The complexity of the implemented weighted arti�cial negative event gener-
ation algorithm to generate all weighted arti�cial negative events in an event
log is thus as follows: O

(
(|L|× |µ|) + (|L|× |µ|)× (|AL|)× (|µ|)

); the su�x tree
construction step is executed once and is linear in the size of the alphabet (in this
case, the length of the longest trace times the log size is an upper bound) [127].
Next, every trace in the event log is iterated once more at each position, and each
activity is still evaluated as a candidate negative event. However, the lookup of
the matching window now scales linearly with the length of the longest trace.
As such, the overall complexity evaluates to O

(
|L|×|µ|2×|AL|

), so that the induc-

68 3.3. WEIGHTED ARTIFICIAL NEGATIVE EVENTS

f (length 1) [f, c, b, a]

d

ea [f, e, a] b[f, d, b, c, a] c

a

[f, d, c, b, a] [f, e, a]

d (length 2 -- stop) ea [f, e, a] cba [f, c, b, a]

bca [f, d, b, c, a] cba [f, d, c, b, a]

ca [f, d, b, c, a]

a

baa [f, d, b, c, a]

[f, c, b, a] [f, d, b, c, a] [f, d, c, b, a] [f, e, a]

[f, c, b, a] [f, d, c, b, a]

[f, c, b, a] [f, d, c, b, a]

bca [f, d, b, c, a] cba [f, d, c, b, a]

Event log L = {〈a,b, c,d, f〉, 〈a, c,b,d, f〉, 〈a,b, c, f〉, 〈a, e, f〉}

Figure 3.2: Illustration of a su�x tree built over an event log L. We illustrate the lookup
of a window 〈x,d, f〉. The window is iterated from right-to-left. Activities f and d are
found (green arrows on the left—dark gray in gray scale), but no edge to x exists, so that
the matching window length evaluates to 2 for this comparison.

tion algorithm now scales linearly with the size of the event log and the activity
alphabet. To illustrate the workings of the su�x tree, Figure 3.2 provides a visual
example of a su�x tree built over a small event log, and how a window lookup
is performed in practice.

This contribution regarding the weighting of negative events and the application
of su�x trees greatly improves the robustness of the negative event induction to
varying levels of event log completeness and the time needed to generate arti�-
cial negative events compared to existing techniques, especially since the trace
variant generation step can be dropped without a signi�cant loss of accuracy in
the weighting of a negative event, as will be shown in the following subsection.

3.3.3 Empirical Validation

To validate our weighted arti�cial negative event approach, we apply the pro-
posed generation technique (Algorithm 3.1) on a number of process event logs
in a controlled environment for which the reference model is known beforehand.
Having such a reference model allows us to construct a complete and correct set
of negative events, as de�ned by the process model itself, by which the arti�cially
generated set of events can then be evaluated. Note that, in real-life process min-
ing settings, a true reference model is, of course, almost always unavailable, so
that these models are only applied in this section as a means to validate the per-
formance of the weighted arti�cial negative event generation procedure.

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 69

The procedure to generate negative events in a given log based on a (�tting) Petri
net is as follows. Just as before, for each trace σ ∈ L, we check at each position
σi which negative events can be induced. To do so, a new trace τ is constructed,
consisting of the full pre�x before (not including) σi in σ, and with the candidate
negative activity a appended at the end, i.e. τ = 〈σ1, . . . ,σi−1,a〉. The reference
model is then queried to see whether it was possible for the negative event un-
der consideration to occur instead of σi, by investigating whether a �tting �ring
sequence fM0 ,(P,T ,F) can be found which can be mapped to τ using µ and which
contains no forced transitions. If such a �tting �ring sequence cannot be found,
the candidate negative event can be inserted in τ before τi3. Algorithm 3.2 de-
scribes this approach in a formalized manner.

Algorithm 3.2 Generating arti�cial negative events from a Petri net in an event
log.
Input: An event log L
Input: (P,T ,F),M0 % Given Petri net and initial marking
Input: µ % Transition-activity mapping µ : T 7→AL ∪ {ai ,ab}
Output: A setN of induced arti�cial negative events

1: function NEP(σi) % Induce set of negative events from Petri net
2: N := ∅
3: for all a ∈AL \ {σi} do
4: s := 1 % Score for this negative event
5: τ := 〈σ1 , . . . ,σi−1 ,a〉
6: % The CanReplay function returns a true or false value depending on whether the given Petri

net is able to replay a given trace starting from the initial marking under a given mapping in a �tting-way,
i.e. without any force �rings

7: if CanReplay((P,T ,F),M0 ,µ,τ) then
8: s := 0 % The Petri net can replay the “negative trace”, so the candidate negative event is not a

true one
9: end if

10: % Negative event with activity a and weight s
11: N :=N∪ {(σ, i,a,s)}
12: end for
13: returnN
14: end function

Twenty-�ve di�erent event logs, containing a variety of structural constructs
and di�ering in complexity, have been utilized. Twenty of these logs were used
before by Alves de Medeiros et al. [66] and have since become part of a widely
used benchmarking set in the �eld of process mining. Additionally, another log,
complex, was built, containing complex behavior (e.g. nested loops and paral-
lelism). Table 3.1 lists the main characteristics of these event logs. The overview

3As a note, the observant reader might be wondering why not a �ring sequence is constructed for
τ = 〈σi〉 for i = 1, . . . , i−1 which is then queried for all disabled transitions—which would provide
information for all negative events immediately atσi, instead of having to query alla ∈AL \{σi}
separately. The reason why this is done because a transition mapped to a might not be enabled in
this �nal state, but there might exist enabled invisible transitions which can be �red to subsequently
enable such a transition. Since such a �ring sequence would be mapped to the same resulting event
log trace, we need to consider these cases as well and thus check whether we can �nd a �tting �ring
sequence for the full τ = 〈σi,a〉 for i = 1, . . . , i− 1 sequence.

70 3.3. WEIGHTED ARTIFICIAL NEGATIVE EVENTS

Table 3.1: Characteristics of event logs and reference models used in the weighted arti�cial
negative event validation setup.

Event Log |AL| |L| |
⋃
L| parallelism? loops? invisibles? non-free choice? duplicates?

a10skip 12 300 6 � �
a12 14 300 5 �
a5 7 300 13 � � �
a6nfc 8 300 3 � � �
a7 9 300 14 �
a8 10 300 4 �
betaSimpli�ed 13 300 4 � � �
choice 12 300 16 �
driversLicense 9 2 2 �
driversLicenseLoop 11 350 87 � � � � �
herbstFig3p4 12 32 32 � �
herbstFig5p19 8 300 6 � � �
herbstFig6p18 7 300 153 � �
herbstFig6p31 9 300 4 �
herbstFig6p36 12 300 2 � �
herbstFig6p38 7 300 5 � �
herbstFig6p41 16 300 12 �
l2l 6 300 10 � �
l2lOptional 6 300 9 � �
l2lSkip 6 300 8 � �
complex 19 6107 1006 � � �
hospital (real-life) 626 1143 981 – – – – –
incident (real-life) 18 24770 1174 – – – – –
telecom (real-life) 42 17812 1908 – – – – –
ticketing (real-life) 9 276599 3140 – – – – –

also includes four real-life logs which will be used in further sections.

3.3.3.1 Correctness

The �rst validation task investigates whether the weight given to generated arti-
�cial negative events is able to correctly di�erentiate between correct and incor-
rect negative events, as indicated by the reference model. For a well-performing
weighting metric, we would expect that the majority of true, correct negative
events is given a high weight, whereas false, incorrect negative events are as-
signed a low weight. Our tests indeed show that this is the case for the logs in-
cluded in our experiment. Figure 3.3 depicts the distribution of arti�cial negative
event weights for ten logs contained in the test set (the distributions for the other
logs are similar and omitted for brevity). For real-life logs incident and telecom, no
reference model is available, so that only the distribution of generated negative
event weights are given (colored gray) for the sake of completeness. The distri-
butions show that, for most candidate negative events, the weighting technique
is able to correctly and unambiguously (i.e. with absolute con�dence) indicate
whether the negative event is valid (weight of 1) or invalid (weight of 0). As logs
become more complex or less complete, more candidate negative events will oc-
cur for which it is impossible (based on the given log) to unambiguously derive

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 71

whether these candidates are valid or not. They are given a weight between 0
and 1. Our experiment shows that these weights correspond with our initial re-
quirement, namely the assignment of a lower weight to incorrect negative events
(as determined by the reference model available in this controlled setup) and a
higher weight to correct negative events. While it is the case that the correct-
ness of the multitude of negative events can be determined in a straightforward
manner based on the given log (i.e. all negative events with weight equaling 1),
it should be noted that the negative examples which cannot be derived as easily
often reveal the most discerning information, such as the presence of non-free
choice constructs, for example. This underlines the strength of the weighting
mechanism as described above, as it now becomes possible to consider all candi-
date negative events in further analysis tasks, taking into account the con�dence
measure given to their existence.

72 3.3. WEIGHTED ARTIFICIAL NEGATIVE EVENTS

Event log a5. Event log a6nfc.

Event log betaSimpli�ed. Event log choice.

Figure 3.3: Overview of generated arti�cial negative events with their calculated weights.
White colored bars represent correct negative events as indicated by the reference model,
whereas black coloring indicates incorrect negative events. The distributions show that,
for most candidate negative events, the weighting technique is able to correctly and un-
ambiguously indicate whether the negative event is valid (weight of 1) or invalid (weight
of 0).

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 73

Event log complex. Event log driversLicenseLoop.

Event log herbstFig3p4. Event log l2lOptional.

Figure 3.3 (continued): Overview of generated arti�cial negative events with their
calculated weights.

74 3.3. WEIGHTED ARTIFICIAL NEGATIVE EVENTS

Event log incident. Event log telecom.

Figure 3.3 (continued): Overview of generated arti�cial negative events with their
calculated weights. For real-life logs incident and telecom, no reference model is
available, so that only the distribution of generated negative event weights are given
(colored grey).

3.3.3.2 Robustness

The second validation task investigates how the weighting given to negative
events evolves in comparison with the completeness of the given input event
log. Figure 3.4 depicts the evolution of negative event weights in comparison
with the completeness of the log. An event log generator was developed and
used to simulate complete event logs (bounded in the number of loops allowed)
from the reference Petri nets (the generation of event logs from a Petri net will be
discussed in detail in Chapter 8). Starting from this complete log, distinct traces
were randomly removed to obtain smaller sized, less complete logs. More pre-
cisely, to generate the arti�cial negative events, the input log in which negative
events are induced is kept constant over all runs, corresponding with the logs
listed in Table 3.1, whereas the log used to build the su�x tree is modi�ed for
each run and set equal to the di�erently sized logs. This ensures that the same
negative events are generated in each run, allowing to better compare the evo-
lution of their weights. If the di�erently sized logs themselves would have been
used to induce the negative events herein, their varying sizes would impact the
average weight for the correct and incorrect negative events, as an increase in log
size could create a large additional amount of negative events, making it impos-
sible to track their global weight evolution. This operation was repeated twenty

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 75

times. The results again support our requirement that correct negative events
are generally given a higher weight than incorrect ones, and that this di�erence
further increases as the input event log becomes more complete. For some logs,
however, the mean weight obtained for the incorrect negative events remains
high when these logs are very incomplete. This behavior is somewhat expected
and desired, as it could be argued that the reference model can no longer be ac-
cepted as the ideal solution in terms of quality when the input event log gets
too small. As such, the aim of assigning a weighting to arti�cially induced neg-
ative events is not to uncover the true underlying reference model behind a log,
even when the log is very incomplete (this would be impossible, in fact), but
rather to weaken the completeness requirement in a robust and correct manner,
so that less complete event logs can still be used to evaluate more complex pro-
cess models without negatively impacting the quality assessment. Remark that
all arti�cial logs listed in Table 3.1 are su�ciently complete, to ensure that their
corresponding reference model remains the optimal solution quality-wise.

76 3.3. WEIGHTED ARTIFICIAL NEGATIVE EVENTS

Event log a5. Event log a6nfc.

Event log betaSimpli�ed. Event log choice.

Figure 3.4: Evolution of arti�cial negative event weights in comparison with event log
completeness, averaged over twenty iterations with the 95% con�dence interval shown
above and below the average. Negative events with low weights are refuted as additional
traces are added (i.e. reach a weight of 0) whereas negative events with higher weights
remain stable.

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 77

Event log driversLicenseLoop. Event log herbstFig3p4.

Event log l2lOptional.

Figure 3.4 (continued): Evolution of arti�cial negative event weights in comparison with
event log completeness.

78 3.4. CHECKING PRECISION AND GENERALIZATION

3.4 Checking Precision and Generalization

Based on the de�nition of weighted arti�cial negative events as explained in the
previous section, we now introduce two new metrics, Weighted Behavioral Pre-
cision (pwB) and Weighted Behavioral Generalization (gwB), to assess the confor-
mance of process models in accordance with a given event log.

To calculate the precision and generalization of a process model in compari-
son with a given log, all traces σ ∈ L are replayed on the given process model.
For each such trace, we calculate values according with the sets of true positive
events TP (positive events which could be replayed without error), false positive
events FP (negative events which could be replayed and are thus erroneously
permitted by the process model), allowed generalizationsAG (generalized events
which could be replayed without error and con�rm the model’s ability to gen-
eralize) and disallowed generalizations DG (generalized events which could not
be replayed by the process model). The concept of allowed and disallowed gen-
eralizations requires some further explanation. Consider the trace σ = 〈a,b,d,e〉
from a log LwithAL = 〈a,b,c,d,e〉}. We induce arti�cial negative events, so that
σ− = 〈(b−,c−,d−,e−),a, (a−,d−,e−),b, (a−,b−,c−,e−),d, (a−,b−,c−,d−),e〉
(assume the weight of each negative event equal to 1, i.e. complete con�dence).
Consider now the positive eventσ2 = b. The set of negative events preceding this
positive event isNE(σi) = {a−,d−,e−}. By comparing these events with the full
activity alphabetAL, it is possible to deduce which alternative events should also
be permitted by the process model after the execution of a (i.e. before σ2 = b),
namely AL\{b,a,d,e} = {c} (the activity alphabet minus the positive event and
its preceding negative events). The process model can then be queried to inves-
tigate whether these deduced generalized events are indeed accepted or not. We
have assumed the negative events in this example to have a weight of 1; it follows
that the strength of a negative event also indicates something about the strength
of this candidate event towards generalization. In short: negative events with a
weight of 1 are unusable to assess generalization capabilities of a process model,
whereas negative events with a weight of 0 (the ones not listed in trace σ−) are
completely unusable to assess precision, but fully valid to determine a model’s
capability to generalize. Consequently, negative events with a weight between
the extrema of 0 and 1, impact both precision and generalization. From now on,
we will thus assume that, when arti�cial negative events are generated in traces,
all activities inAL are inserted before each positive event, excluding the positive
event itself, together with their associated weights.

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 79

The values for TP, FP, AG and DG are now calculated as follows between an
event log L and a process model. Each trace σ ∈ L is replayed on the process
model. For every positive event σi ∈ σ, function NE(σi) is called to induce the
set containing all arti�cial negative events with their weights at this position.
Starting from the state reached so far in the trace replay (e.g. the current mark-
ing in case of a Petri net), we inspect whether each negative event n ∈ NE(σi)
could be �red by the process model. If this is indeed the case, the value of FP
is incremented with the weight of the negative event Weight(n), and the value of
AG is incremented with 1−Weight(n). If the process model is unable to parse
the negative event, DG is incremented with 1−Weight(n). Remark that we only
inspect the possibility of executing each negative event, without actually �ring
the corresponding process model element. After evaluating the negative events
at the current position towards checking precision and generalization confor-
mance, the positive event itself is parsed. When this event could be �red without
error, the value of TP is increased by 1.

Concerning the implementation of trace replay, a heuristic procedure has been
developed to evaluate event logs on Petri nets, similar to other approaches de-
scribed in literature [2, 99]. However, evaluating traces containing negative
events requires a modi�ed trace replay procedure, which explores from the mark-
ing obtained after �ring the last encountered positive event all invisible transition
“paths” in order to determine if a negative event can be enabled or not, an aspect
which is not taken into account in earlier techniques. Additionally, some words
should be devoted to the aspect of force �ring. As the force �ring of transitions
produces additional tokens, it might follow that these tokens subsequently lead
to the undesirable enabling of negative events. Adriansyah et al. have proposed
a replay technique which avoids force �ring altogether by allowing the process
model and log to move independently (thus resulting in a model-log alignment).
As such, we have added a second replay procedure to establish a best �tting �r-
ing sequence based on the alignment technique as described in [108–112], which
evaluates positive events based on whether the event under consideration could
be successfully aligned with a transition execution in the process model. For
negative events, the same evaluation procedure as before is utilized (with invis-
ible path exploration), starting from the marking obtained after the last aligned
model-log move. In our heuristic approach, we skip the evaluation of the set of
negative events following immediately after a force �red positive event. More
details on how to replay an event log with negative events in a Petri net are
described in Subsection 3.6.1. Note that our heuristic approach e�ectively imple-
ments a method to calculate a �ring sequence fM0 ,(P,T ,F), as was mentioned in

80 3.5. EXPERIMENTAL EVALUATION

the introductory chapter.

The precision and generalization metrics are now calculated as:

pwB =
TP

TP+ FP
gwB =

AG

AG+DG

Remark that the weight of a negative event (its impact on precision) was de-
�ned as Min∀window comparisons(

|window|−|matching window|
|window|), i.e. the minimal unmatch-

ing window ratio over all window comparisons performed. It follows thus, that
the impact of a negative event on generalization is equal to:

1−Min∀window comparisons(
|window|− |matching window|

|window|
)

or, also:

Max∀window comparisons(
|matching window|

|window|
)

i.e. the maximal matching window ratio found over all window comparisons per-
formed.

We have, thus far, presented a uni�ed technique to calculate precision and gen-
eralization based on event traces with weighted arti�cial negative events. Note
�nally that �tness can still be calculated as in [2] (i.e. using the true positive and
false negative values):

rB =
TP

TP+ FN

With FN the positive events which could not be replayed and are thus erro-
neously rejected by the process model.

All described techniques and methods are implemented in a series of ProM plu-
gins. Figure 3.5 shows a screen capture illustrating the implementation.

3.5 Experimental Evaluation

This section presents a comparative analysis of our proposed Weighted Behav-
ioral Precision (pwB) and Weighted Behavioral Generalization (gwB) metrics in re-
spect to other approaches found in the literature.

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 81

Figure 3.5: Screen capture implemented ProM plugin. The left panel shows the (dis-
tinct) trace variants contained in the given event log. The right panel shows key met-
rics obtained from the replay/evaluation procedure. The bottom panel allows users to
step through events and inspect which transitions were (force) �red accordingly. Finally,
the main central area contains the Petri net itself. Transitions are annotated with val-
ues corresponding with the number of times the transition occurred as a true/false pos-
itive/negative or as an allowed or disallowed generalized event. Transitions and places
are also color-coded to allow users to quickly see where and why conformance problems
occur.

Figure 3.6: An additional plugin was developed to inspect to weighting distribution of
negative and generalized event in a visual manner.

82 3.5. EXPERIMENTAL EVALUATION

3.5.1 Setup

The following techniques are included in the experimental setup (see Table 3.2
for an overview). For precision, the Advanced Behavioral Appropriateness (a ′B)
metric is included, as de�ned by Rozinat et al. [100]. Although this metric pro-
vides a theoretically sound method in order to evaluate the precision of a process
model, it has been argued that a number of drawbacks exist, among which an ex-
haustive calculation requirement and an implementation which is only approxi-
mate [107]. Second, the ETC Precision metric (etcp) as proposed by Muñoz-Gama
and Carmona [105, 106] evaluates precision based on the concept of so-called es-
caping edges. Adriansyah et al. de�ne a similar precision metric as ETC Precision
(etcp) in [109], based on their model-log alignment replay technique, denoted
here as Alignment Based Precision (pA). The same authors have also de�ned One
Align Precision (a1p) and Best Align Precision (ap) metrics [112], which combine
the concept of model-log alignments with the metrics de�ned by Muñoz-Gama
and Carmona. Adriansyah et al. also propose a generalization metric in [109]
where a Bayesian estimator is applied in order to derive a model’s ability to gen-
eralize, based on the idea that the likelihood of new, unseen behavior in a certain
state depends on the number of times this state was encountered and the number
of di�erent decisions (i.e. activities) observed in this state. This technique has
been included as Alignment Based Generalization (gA). In [100], an Advanced
Structural Appropriateness (a ′S) metric is de�ned to determine whether a process
model over�ts an event log. However, this metric only takes into account cer-
tain structural properties of a process model (redundant invisible transitions and
alternative duplicate transitions), so that it is not fully able to evaluate generaliza-
tion. More precisely, it is argued that this metric better �ts with the fourth qual-
ity dimension—simplicity, as redundant and duplicate transitions mainly hinder
a model’s ability to be well and easily understood than its ability to parse event
traces. As such, we do not include this entry in our setup. Finally, we compare our
approach with a related technique described by De Weerdt et al. [107] and Goed-
ertier et al. [2], where the notion of precision (Behavioral Precision, pB) based
on negative events was initially put forward. Since our technique extends both
the generation procedure of negative events and the replay procedure applied,
we expect to gain a performance increase. This earlier approach does not de�ne
a generalization metric. Other, less related, precision and generalization metrics
exist, which either target a process modeling representation other than Petri nets
or are unimplemented in ProM, so that the set of evaluated conformance metrics
is limited to the entries described above.

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 83

Table 3.2: Conformance checking measures included in the experimental setup.

Name Symbol Author(s) �ality Dimension
Behavioral Recall rB vanden Broucke et al. [101] Recall
Advanced Behavioral Appropriateness a

′
B

Rozinat and van der Aalst [100] Precision
ETC Precision etcp Muñoz-Gama et al. [105, 106] Precision
Behavioral Precision pB De Weerdt et al. [107] Precision
Alignment Based Precision pA Adriansyah et al. [109] Precision
One Align Precision a1p Adriansyah et al. [112] Precision
Best Align Precision ap Adriansyah et al. [112] Precision
Weighted Behavioral Precision pwB vanden Broucke et al. [101] Precision
Alignment Based Probabilistic Generalization gA Adriansyah et al. [109] Generalization
Weighted Behavioral Generalization gwB vanden Broucke et al. [101] Generalization

The included metrics are compared with our new conformance checking ap-
proach, i.e. Weighted Behavioral Precision (pwB) and Weighted Behavioral Gener-
alization (gwB), using both our own heuristic trace replay method and the replay
method based on model-log alignments. For reasons of completeness and to con-
�rm the capability of the developed replay techniques to correctly parse traces
(based on the known reference and example models), we report Behavioral Recall
(rB) in the results as well (also using both replay methods).

3.5.2 Fixed Log Sizes

In this comparative analysis experiment, the event log test set introduced in Sec-
tion 3.3 will be utilized. Remark that most event logs stem from a-priori known
reference models and will be evaluated on the same model. As such, we expect
well-performing conformance checking techniques to reach high precision and
generalization scores for these combinations. For the real-life logs, no reference
model is known, so that we will evaluate these logs on discovered Petri net mod-
els (using the Heuristics Miner [44] discovery algorithm). Finally, we also incor-
porate the �ve models from Figure 3.1 in our experimental setup (event log: ex-
ampleLog), as this allows us to evaluate which conformance checking technique
is best able to punish Petri net models of extremely low quality (low precision
for connectedModel and �owerModel, and low generalization for singleModel and
stackedModel).

Table 3.3 shows the results of our experiment for the evaluated metrics on all
event log-Petri net pairs. For each result, scores are reported as a number be-
tween 0 (worst) and 1 (best). Run times are given between parentheses as sec-
onds. Calculations were limited to 24 hours of computational time. Runs exceed-
ing this amount of time or runs which resulted in a crash or error are left out(“–”).
All experiments were executed on a workstation with 2 processors (2.53Ghz; 4
cores per processor) and 64GB of memory. The Java heap size for each individual

84 3.5. EXPERIMENTAL EVALUATION

experiment was set to 4GB. Stack size was left default, as no single stack over�ow
error occurred during the experimentation.

Based on the results listed in Table 3.3, the following observations can be made.
First, many conformance checking techniques have di�culties dealing with large
or complex event logs. For many of the real-life logs, only the arti�cial neg-
ative event-based conformance checking techniques and ETC Precision (etcp)
were able to always �nd a result, the others encountering out-of-time or out-of-
memory errors; note that the hospital log forms a noteworthy exception—as the
arti�cial negative event-based conformance checking techniques were not able
to compute a result in time. Next, focusing on precision, it is found that many
metrics unduly punish precision errors due to input logs being less complete. For
all arti�cial cases, our Weighted Behavioral Precision metric (pwB) is able to �nd
a precision value close to 1. For the real-life logs, the existing metrics return a
lower value than the results obtained by Weighted Behavioral Precision (pwB). Al-
though the true precision of these mined models is unknown, the almost-0 score
obtained by ETC Precision (etcp) appears to be overly pessimistic. Concerning
the exampleLog models, we observe that for connectedModel and �owerModel,
the Weighted Behavioral Precision metric (pwB) correctly punishes the many pre-
cision errors found in these models. Note that some metrics have issues when
traversing the possible invisible paths in connectedModel, with Behavioral Preci-
sion (pB) being unable to detect any imprecisions at all. Concerning generaliza-
tion, the Alignment Based Generalization metric (gA) returns unexpectedly high
values for stackedModel and singleModel (the score of 0 for driversLicense is also
unexpected and perhaps due to a bug). The Weighted Behavioral Generalization
metric (gwB) is able to punish each generalization issue, and does so in a more
strict manner. Therefore, for real-life applications, it remains recommended to
�rst focus on model �tness and precision, followed by generalization with lower
priority. A �nal remark should be made concerning the di�erences between the
two implemented replay techniques (heuristic and alignment based) when using
the Weighted Behavioral Precision and Generalization metrics (pwB and gwB). For
many logs, we cannot observe a signi�cant di�erence in values between the two
techniques, although the run times are higher when using the alignment based
replay procedure. Some interesting di�erences are observed for the telecom, in-
cident and the connectedModel and singleModel logs, where the alignment based
replay procedure is less punishing with regards to precision.

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 85

Table 3.3: Obtained values and run times (in seconds) for the evaluated recall metrics.

Event Log Petri Net Recall Metric
rB (heuristic) rB (alignment)

a10skip reference model 1.00 (0.31s) 1.00 (0.61s)
a12 reference model 1.00 (0.30s) 1.00 (0.55s)
a5 reference model 1.00 (0.36s) 1.00 (0.58s)
a6nfc reference model 1.00 (0.17s) 1.00 (0.39s)
a7 reference model 1.00 (0.34s) 1.00 (0.55s)
a8 reference model 1.00 (0.22s) 1.00 (0.37s)
betaSimpli�ed reference model 1.00 (0.31s) 1.00 (0.47s)
choice reference model 1.00 (0.44s) 1.00 (0.70s)
complex reference model 1.00 (3.20s) 1.00 (10.34s)
driversLicense reference model 1.00 (0.09s) 1.00 (0.17s)
driversLicenseLoop reference model 1.00 (1.02s) 1.00 (1.65s)
herbstFig3p4 reference model 1.00 (0.50s) 1.00 (0.98s)
herbstFig5p19 reference model 1.00 (0.33s) 1.00 (0.44s)
herbstFig6p18 reference model 1.00 (0.95s) 1.00 (4.11s)
herbstFig6p31 reference model 1.00 (0.25s) 1.00 (0.56s)
herbstFig6p36 reference model 1.00 (0.34s) 1.00 (0.64s)
herbstFig6p38 reference model 1.00 (0.33s) 1.00 (0.51s)
herbstFig6p41 reference model 1.00 (0.47s) 1.00 (0.89s)
l2l reference model 1.00 (0.30s) 1.00 (0.48s)
l2lOptional reference model 1.00 (0.31s) 1.00 (0.47s)
l2lSkip reference model 1.00 (0.30s) 1.00 (0.50s)
exampleLog perfectModel 1.00 (0.64s) 1.00 (0.69s)
exampleLog connectedModel 1.00 (0.83s) 1.00 (0.95s)
exampleLog �owerModel 1.00 (0.37s) 1.00 (0.70s)
exampleLog singleModel 0.38 (0.45s) 0.45 (0.64s)
exampleLog stackedModel 0.84 (0.86s) 1.00 (0.97s)
hospital (real-life) mined model 0.92 (5460.67s) –
incident (real-life) mined model 0.79 (13.56s) 0.41 (9374.49s)
telecom (real-life) mined model 0.70 (15.70s) 0.39 (16523.82s)
ticketing (real-life) mined model 1.00 (503.24s) 1.00 (701.53s)

86 3.5. EXPERIMENTAL EVALUATION

Ta
bl

e
3.3

(c
on

tin
ue

d)
:O

bt
ai

ne
d

va
lu

es
an

d
ru

n
tim

es
(in

se
co

nd
s)

fo
rt

he
ev

al
ua

te
d

pr
ec

isi
on

m
et

ric
s.

Ev
en

t
Lo

g
Pe

tr
iN

et
Pr

ec
is

io
n

M
et

ri
cs

W
ei

gh
te

d
Be

ha
vi

or
al

Pr
ec

is
io

n
a
′ B

e
t
c
p

p
A

a
1 p

a
p

p
B

p
w B

(h
eu

ris
tic

)
p
w B

(a
lig

nm
en

t)
a1
0s
ki
p

re
fe
re
nc
e
m
od
el

1.0
0

(0
.33

s)
0.9

1
(0

.25
s)

0.9
7

(0
.42

s)
1.0

0
(0

.50
s)

0.9
2

(5
.60

s)
1.0

0
(1

.81
s)

1.0
0

(0
.53

s)
1.0

0
(0

.61
s)

a1
2

re
fe
re
nc
e
m
od
el

1.0
0

(0
.35

s)
1.0

0
(0

.23
s)

1.0
0

(0
.41

s)
1.0

0
(0

.42
s)

0.9
3

(4
.38

s)
1.0

0
(3

.26
s)

1.0
0

(0
.45

s)
1.0

0
(0

.66
s)

a5
re
fe
re
nc
e
m
od
el

0.4
7

(0
.38

s)
0.2

9
(0

.22
s)

1.0
0

(0
.53

s)
0.9

3
(0

.45
s)

0.7
0

(1
3.5

0s
)

1.0
0

(0
.70

s)
1.0

0
(0

.47
s)

1.0
0

(0
.70

s)
a6
nf
c

re
fe
re
nc
e
m
od
el

0.6
9

(0
.35

s)
0.5

1
(0

.22
s)

1.0
0

(0
.34

s)
0.7

9
(0

.41
s)

0.7
8

(2
.31

s)
0.9

4
(0

.53
s)

1.0
0

(0
.30

s)
1.0

0
(0

.49
s)

a7
re
fe
re
nc
e
m
od
el

1.0
0

(0
.33

s)
1.0

0
(0

.23
s)

1.0
0

(0
.39

s)
1.0

0
(0

.48
s)

0.7
7

(8
.84

s)
1.0

0
(0

.72
s)

1.0
0

(0
.44

s)
1.0

0
(0

.72
s)

a8
re
fe
re
nc
e
m
od
el

1.0
0

(0
.30

s)
1.0

0
(0

.22
s)

1.0
0

(0
.30

s)
1.0

0
(0

.33
s)

0.8
0

(1
.89

s)
1.0

0
(0

.74
s)

1.0
0

(0
.28

s)
1.0

0
(0

.45
s)

be
ta
Si
m
pl
i�
ed

re
fe
re
nc
e
m
od
el

1.0
0

(0
.47

s)
0.7

7
(0

.27
s)

0.9
8

(0
.42

s)
0.9

4
(0

.49
s)

0.8
7

(4
.55

s)
1.0

0
(7

.91
s)

1.0
0

(0
.45

s)
1.0

0
(0

.62
s)

ch
oi
ce

re
fe
re
nc
e
m
od
el

1.0
0

(0
.36

s)
0.5

7
(0

.27
s)

1.0
0

(0
.60

s)
1.0

0
(0

.63
s)

0.8
9

(1
9.7

6s
)

1.0
0

(1
.58

s)
1.0

0
(0

.61
s)

1.0
0

(0
.91

s)
co
m
pl
ex

re
fe
re
nc
e
m
od
el

–
0.5

5
(1

.52
s)

0.7
5

(5
.33

s)
0.6

5
(3

.08
s)

–
0.7

3
(1

96
3.2

3s
)

0.7
3

(1
8.5

4s
)

0.7
4

(2
5.5

8s
)

dr
iv
er
sL
ic
en
se

re
fe
re
nc
e
m
od
el

1.0
0

(0
.11

s)
0.6

3
(0

.03
s)

1.0
0

(0
.13

s)
0.9

0
(0

.11
s)

0.8
0

(1
.30

s)
1.0

0
(0

.13
s)

1.0
0

(0
.17

s)
1.0

0
(0

.36
s)

dr
iv
er
sL
ic
en
se
Lo
op

re
fe
re
nc
e
m
od
el

0.9
1

(0
.53

s)
0.9

0
(0

.41
s)

0.9
5

(1
.06

s)
0.9

0
(0

.84
s)

–
0.8

7
(1

0.0
2s

)
0.9

7
(1

.78
s)

0.9
7

(3
.78

s)
he
rb
st
Fi
g3
p4

re
fe
re
nc
e
m
od
el

0.7
0

(0
.28

s)
0.9

9
(0

.22
s)

0.9
8

(0
.44

s)
0.9

7
(0

.34
s)

0.9
2

(7
7.5

5s
)

0.9
6

(3
.50

s)
0.9

9
(1

.12
s)

0.9
9

(2
.23

s)
he
rb
st
Fi
g5
p1
9

re
fe
re
nc
e
m
od
el

1.0
0

(0
.48

s)
0.8

8
(0

.25
s)

0.9
6

(0
.42

s)
1.0

0
(0

.34
s)

0.8
9

(5
.31

s)
1.0

0
(0

.70
s)

1.0
0

(0
.47

s)
1.0

0
(0

.66
s)

he
rb
st
Fi
g6
p1
8

re
fe
re
nc
e
m
od
el

0.5
9

(0
.55

s)
0.4

0
(0

.34
s)

0.7
3

(2
.28

s)
0.9

3
(1

.80
s)

0.8
8

(1
23

9.9
2s

)
0.9

1
(7

.23
s)

0.9
7

(1
.95

s)
0.9

7
(3

.79
s)

he
rb
st
Fi
g6
p3
1

re
fe
re
nc
e
m
od
el

1.0
0

(0
.41

s)
1.0

0
(0

.25
s)

1.0
0

(0
.34

s)
1.0

0
(0

.38
s)

0.7
8

(1
.25

s)
1.0

0
(0

.72
s)

1.0
0

(0
.33

s)
1.0

0
(0

.53
s)

he
rb
st
Fi
g6
p3
6

re
fe
re
nc
e
m
od
el

1.0
0

(0
.53

s)
0.7

5
(0

.36
s)

1.0
0

(0
.58

s)
0.9

2
(0

.84
s)

0.9
2

(3
.01

s)
1.0

0
(3

.31
s)

1.0
0

(0
.55

s)
1.0

0
(0

.59
s)

he
rb
st
Fi
g6
p3
8

re
fe
re
nc
e
m
od
el

1.0
0

(0
.52

s)
0.9

0
(0

.27
s)

1.0
0

(0
.53

s)
0.9

5
(0

.44
s)

0.8
9

(5
.31

s)
1.0

0
(0

.81
s)

1.0
0

(0
.42

s)
1.0

0
(0

.69
s)

he
rb
st
Fi
g6
p4
1

re
fe
re
nc
e
m
od
el

1.0
0

(0
.47

s)
1.0

0
(0

.39
s)

1.0
0

(0
.55

s)
1.0

0
(0

.58
s)

0.9
2

(1
6.5

1s
)

1.0
0

(1
1.9

6s
)

1.0
0

(0
.69

s)
1.0

0
(0

.95
s)

l2
l

re
fe
re
nc
e
m
od
el

0.5
6

(0
.28

s)
1.0

0
(0

.17
s)

1.0
0

(0
.33

s)
1.0

0
(0

.41
s)

0.7
9

(8
.15

s)
1.0

0
(0

.84
s)

1.0
0

(0
.39

s)
1.0

0
(0

.59
s)

l2
lO
pt
io
na

l
re
fe
re
nc
e
m
od
el

0.6
5

(0
.31

s)
0.4

0
(0

.19
s)

1.0
0

(0
.37

s)
1.0

0
(0

.31
s)

0.8
7

(7
.04

s)
1.0

0
(0

.72
s)

1.0
0

(0
.42

s)
1.0

0
(0

.66
s)

l2
lS
ki
p

re
fe
re
nc
e
m
od
el

0.4
2

(0
.28

s)
0.8

5
(0

.22
s)

0.9
3

(0
.36

s)
1.0

0
(0

.39
s)

0.8
3

(6
.37

s)
1.0

0
(0

.97
s)

1.0
0

(0
.42

s)
1.0

0
(0

.61
s)

ex
am

pl
eL
og

pe
rf
ec
tM

od
el

1.0
0

(1
.00

s)
1.0

0
(0

.36
s)

1.0
0

(0
.64

s)
1.0

0
(0

.52
s)

0.7
8

(1
5.3

3s
)

1.0
0

(2
.91

s)
1.0

0
(0

.86
s)

1.0
0

(1
.05

s)
ex
am

pl
eL
og

co
nn

ec
te
dM

od
el

–
0.0

6
(0

.36
s)

0.2
6

(1
.81

s)
0.2

6
(1

.08
s)

0.2
7

(3
5.9

3s
)

1.0
0

(3
.02

s)
0.1

3
(1

.50
s)

0.1
3

(1
.84

s)
ex
am

pl
eL
og

�o
w
er
M
od
el

–
0.1

6
(0

.42
s)

0.2
6

(0
.64

s)
0.1

6
(0

.48
s)

0.2
6

(3
.67

s)
0.1

2
(2

.66
s)

0.1
2

(0
.72

s)
0.1

2
(0

.98
s)

ex
am

pl
eL
og

si
ng
le
M
od
el

1.0
0

(0
.70

s)
1.0

0
(0

.34
s)

1.0
0

(0
.50

s)
1.0

0
(0

.59
s)

1.0
0

(1
.06

s)
0.4

1
(2

.41
s)

0.7
1

(0
.63

s)
1.0

0
(0

.87
s)

ex
am

pl
eL
og

st
ac
ke
dM

od
el

1.0
0

(1
4.3

1s
)

0.1
2

(0
.37

s)
1.0

0
(1

.11
s)

1.0
0

(0
.86

s)
0.7

1
(1

23
.51

s)
0.7

1
(3

.23
s)

0.6
7

(1
.19

s)
1.0

0
(1

.59
s)

ho
sp
ita

l(
re

al
-li

fe
)

m
in
ed

m
od
el

–
0.0

3
(4

.68
s)

0.1
3

(1
82

9.7
4s

)
0.0

3
(1

23
4.4

7s
)

0.0
4

(8
73

.27
s)

–
–

–
in
ci
de
nt

(re
al

-li
fe

)
m
in
ed

m
od
el

–
0.0

5
(1

.65
s)

–
–

–
0.6

8
(8

8.3
9s

)
0.4

1
(1

40
.83

s)
0.9

4
(5

88
5.0

6s
)

te
le
co
m

(re
al

-li
fe

)
m
in
ed

m
od
el

–
0.1

0
(1

.53
s)

–
0.4

7
(1

74
39

.21
s)

–
0.4

7
(8

63
85

.41
s)

0.4
5

(5
66

.04
s)

0.8
8

(1
82

36
.50

s)
tic
ke
tin

g
(re

al
-li

fe
)

m
in
ed

m
od
el

–
0.1

3
(1

28
.31

s)
0.8

1
(1

57
46

.07
s)

0.9
9

(1
53

74
.66

s)
–

1.0
0

(4
48

34
.75

s)
0.9

7
(4

55
.13

s)
0.9

7
(6

93
.85

s)

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 87

Table 3.3 (continued): Obtained values and run times (in seconds) for the evaluated
generalization metrics.

Event Log Petri Net Generalization Metric Weighted Behavioral Generalization
gA gwB (heuristic) gwB (alignment)

a10skip reference model 1.00 (0.48s) 0.91 (0.55s) 0.91 (0.80s)
a12 reference model 1.00 (0.39s) 0.83 (0.48s) 0.83 (0.69s)
a5 reference model 1.00 (0.55s) 0.88 (0.56s) 0.88 (0.99s)
a6nfc reference model 1.00 (0.47s) 0.64 (0.33s) 0.64 (0.47s)
a7 reference model 1.00 (0.41s) 0.70 (0.47s) 0.70 (0.74s)
a8 reference model 1.00 (0.30s) 0.94 (0.28s) 0.94 (0.48s)
betaSimpli�ed reference model 1.00 (0.48s) 0.70 (0.50s) 0.70 (0.75s)
choice reference model 1.00 (0.63s) 1.00 (0.81s) 1.00 (1.24s)
complex reference model 1.00 (5.26s) 0.51 (17.94s) 0.51 (22.37s)
driversLicense reference model 0.00 (0.09s) 0.80 (0.14s) 0.80 (0.28s)
driversLicenseLoop reference model 1.00 (1.22s) 0.83 (1.45s) 0.83 (2.96s)
herbstFig3p4 reference model 1.00 (0.41s) 0.94 (0.97s) 0.94 (1.69s)
herbstFig5p19 reference model 1.00 (0.38s) 0.77 (0.41s) 0.77 (0.81s)
herbstFig6p18 reference model 1.00 (2.62s) 1.00 (2.29s) 1.00 (3.87s)
herbstFig6p31 reference model 1.00 (0.45s) 0.57 (0.42s) 0.57 (0.55s)
herbstFig6p36 reference model 1.00 (0.53s) 0.57 (0.53s) 0.57 (0.87s)
herbstFig6p38 reference model 1.00 (0.58s) 0.50 (0.48s) 0.50 (0.66s)
herbstFig6p41 reference model 1.00 (0.56s) 0.73 (0.80s) 0.73 (1.00s)
l2l reference model 1.00 (0.37s) 1.00 (0.44s) 1.00 (0.67s)
l2lOptional reference model 1.00 (0.45s) 1.00 (0.45s) 1.00 (0.70s)
l2lSkip reference model 1.00 (0.41s) 1.00 (0.47s) 1.00 (0.64s)
exampleLog perfectModel 1.00 (0.58s) 0.84 (0.62s) 0.84 (0.94s)
exampleLog connectedModel 1.00 (1.78s) 1.00 (1.42s) 1.00 (1.70s)
exampleLog �owerModel 1.00 (0.55s) 1.00 (0.62s) 1.00 (0.89s)
exampleLog singleModel 1.00 (0.47s) 0.00 (0.59s) 0.00 (0.84s)
exampleLog stackedModel 0.98 (0.94s) 0.33 (1.22s) 0.00 (1.40s)
hospital (real-life) mined model 0.29 (1853.34s) – –
incident (real-life) mined model – 0.52 (181.39s) 0.54 (5709.55s)
telecom (real-life) mined model – 0.41 (557.31s) 0.46 (18215.54s)
ticketing (real-life) mined model 1.00 (20957.02s) 0.81 (429.81s) 0.81 (672.68s)

88 3.5. EXPERIMENTAL EVALUATION

Figure 3.7: Run times (averaged over twenty iterations) of evaluated conformance check-
ing techniques over various log sizes. The grey bands indicate the 95% con�dence intervals
below and above the means.

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 89

3.5.3 Varying Log Sizes

This section discusses the scalability (in terms of run time) and stability (in terms
of obtained values) of the evaluated metrics under varying sizes of event logs (and
thus completeness). To do so, the process model of the complex log was used as a
basis from which twenty sets of di�erently sized event logs (ranging between 500
and 10000 traces) were generated—thus totaling 400 event logs. We then evaluate
each log on the reference model using the metrics discussed above.

Regarding scalability, it is investigated whether the run time performance of a
metric depends heavily on the size of the evaluated log. Figure 3.7 provides an
overview of the required run times for each evaluated technique over various
log sizes. The run times of most techniques remain within acceptable bounds.
For the Advanced Behavioral Appropriateness metric (a ′B), however, calculations
always exceeded the allotted 24 hours. This is due to the extensive process model
state space exploration which is performed by these metrics. Also, calculating
Best Align Precision (ap) requires exponentially more time as the log size is in-
creased. In [112], the authors indeed acknowledge the long calculation time re-
quired towards calculating this metric. In addition, for logs containing 2 000 or
more traces, the metric was not able to obtain any result due to out-of-memory
errors. Concerning the calculation of the arti�cial negative event-based metrics
(Behavioral Precision pB, Weighted Behavioral Precision pwB and Weighted Behav-
ioral Generalization gwB), it is important to note that Figure 3.7 includes the time
taken to induce the negative events in the reported run time (note the exponen-
tial time increase for Behavioral Precision). Figure 3.8 shows the run time required
for the generation of all arti�cial negative events separately and illustrates the
scalability bene�t gained by our implementation using su�x trees to induce the
weighted arti�cial negative events and shows linear complexity in terms of log
size, as was discussed above.

Concerning stability, we evaluate whether the obtained precision and general-
ization values are sensitive to various levels of log completeness, as well as inves-
tigate the actual score values themselves. Figure 3.9 depicts an overview of the
retrieved metric values. The following remarks can be made based on the results.
First, the Weighted Behavioral Precision metric (pwB) improves slightly upon the
non-weighted Behavioral Precision (pB) and Alignment Based Precision (pA) met-
rics and that it highly exceeds the ETC Precision (etcp) and One Align Precision
(a1p) metrics (recall that, since we are dealing with simulated event logs from a
reference model, we expect precision to be high as the evaluated log reaches a

90 3.5. EXPERIMENTAL EVALUATION

Figure 3.8: Run times (averaged over twenty iterations) of (weighted) arti�cial negative
event procedure over various log sizes, illustrating the speed bene�t obtained by our tech-
nique compared to the original arti�cial negative induction method. The grey bands in-
dicate the 95% con�dence intervals below and above the means.

su�cient size). On the other hand, the Best Align Precision metric (ap) outper-
forms our approach, although this metric comes with high run times and is less
able to deal with larger event logs. We were not able to con�rm the statement
made in [112] regarding the similarity in results betweenOne Align Precision (a1p)
and Best Align Precision (ap), since there exists a wide gap between the results
for these two metrics. Finally, although the Advanced Behavioral Appropriateness
metric (a ′B) results in the highest precision value, the result is only approximate
(the state space exploration phase was canceled after 24h). Moreover, this metric
only investigates basic structural relations between model and log activities, so
that this metric as well presents a tendency to be overly optimistic. Concerning
generalization, the Weighted Behavioral Generalization metric (gwB) applies the
concept of weighted arti�cial negative events towards checking generalization,
which takes into account full behavioral properties found in both process model
and event log. Although the metric remains very stable over various log sizes
(the slight drop at the beginning is due to the fact that the activity alphabet is
incomplete for the very small logs), it is noted that this metric estimates gener-
alization in a very strict manner, especially when compared with the Alignment
Based Generalization metric (ag). However, as seen in Subsection 3.5.2, this prob-
abilistic metric also returns very high values for the experiment models with a

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 91

very low generalization capability, i.e. singleModel and stackedModel, whereas
Weighted Behavioral Generalization (gwB) does punish these models.

3.6 Discussed Topics

Thus far, we presented a uni�ed technique to calculate precision and generaliza-
tion based on event traces with weighted arti�cial negative events. In this sec-
tion, some additional topics of interest are discussed, among which: more details
on the problem of trace replay for traces containing both positive and negative
events, additional (optional) con�guration parameters which can be modi�ed by
expert end-users, a discussion on alternative (i.e. non-sequence window-based)
arti�cial negative event generation strategies, and a discussion on the impact of
noise on the generation of arti�cial negative events.

3.6.1 Trace Replay with Positive and Negative Events

Above, we have introduced a heuristic approach to replay traces containing pos-
itive and negative events, so as to evaluate a process model in terms of its recall,
precision, and generalization abilities through the construction of a confusion
matrix (true/false positive/negative events and allowed and disallowed general-
ized events). We have stated that our heuristic approach also o�ers a �rst method
to calculate a �ring sequence fM0 ,(P,T ,F) for a given (positive) log trace, i.e. a
series of transitions which can be mapped ot this positive trace. To iterate: a
�ring sequence fM0 ,(P,T ,F) is a �nite sequence of transitions 〈t1, t2, . . . , tn〉 ∈ T ,
with M0 the initial marking and Mi (0 < i 6 n) the resulting marking after
(force) �ring t1 up to and including ti sequentially. A trace σ ∈ L can be re-
played by the Petri net (P,T ,F) if a �ring sequence fM0 ,(P,T ,F) can be found such
that σi = µ(f

M0 ,(P,T ,F)∗
i) with 0 < i 6 |σ| and fM0 ,(P,T ,F)∗ = fM0 ,(P,T ,F) \ {t ∈

fM0 ,(P,T ,F)|µ(t) = ai}. Note that it is possible that multiple �ring sequences can
be found to replay a trace. When a �ring sequence can be found for a trace so that
all transitions can be �red sequentially starting from initial marking M0 with-
out one of them being forced to �re, it is said that the trace �ts in the Petri net.
Replay is thus closely related to the �rst model quality dimension: �tness.

In this section, we o�er some additional insights on how exactly a �ring sequence
can be constructed through a Petri net for a given trace. More speci�cally, we
will look at:

92 3.6. DISCUSSED TOPICS

Figure 3.9: Results of evaluated conformance checking techniques (averaged over twenty
iterations) over various log sizes. The grey bands (narrow) indicate the 95% con�dence
intervals below and above the means.

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 93

a p2

b
p3

c
d p4 e p5p1

Figure 3.10: A simple process model used as an illustration for trace replay.

Replay strategies: to construct a �ring sequence fM0 ,(P,T ,F) for a given trace
σ ∈ L . Note that, for the construction of a �ring sequence, only the positive
events are needed, as negative events can be evaluated separately once a
�ring sequence is constructed.

Evaluation schemes: determining the manner how negative eventsNE(σi)
for σ ∈ L are evaluated on a constructed �ring sequence fM0 ,(P,T ,F) .

3.6.1.1 Introduction

Consider the trace: σ = 〈a,b,d,e〉 from a log L with AL = {a,b,c,d,e} . This
trace can be replayed on the process model in Figure 3.10 in the following man-
ner (constructing the transition-activity mapping µ is trivial in this case: each
transition is mapped to the activity inAL with the same name). The initial mark-
ing is M0 = {p1} . We can easily determine which transition to �re to execute
event a (there is only one candidate), so thatM1 = {p2}. The next markings (after
�ring b, d and e) are M2 = {p3} , M3 = {p4} and �nal marking M4 = {p5}. We
thus simply obtain the following �tting �ring sequence:

fM0 ,(P,T ,F) a b d e

σ a b d e
.

Suppose now that we have a trace τ = 〈a,d,c,e〉. After �ring a, the marking is
once more M1 = {p2}. Since there is now only one candidate-transition to �re
activity d, and this transition is not enabled (there is no token at p3 forM1), the
transition is force �red and M2 = {p2,p4}. After subsequently executing c and
e, the �nal marking equals M4 = {p3,p5}. Note the remaining token at place p3.
We thus obtain the following �ring sequence:

94 3.6. DISCUSSED TOPICS

a p2

b
p4

c
d p5 e p6

invisible p3

p1

Figure 3.11: A simple process model used as an illustration for trace replay (invisible
activity added).

fM0 ,(P,T ,F) a d∗ c e

τ a d c e
.

Note that this �ring sequence is not completely �tting, as a transition (d) was
force �red in order to execute the trace τ.

The problem of trace replay in the context of process mining has been exten-
sively described in the literature [99]. Generally speaking, two essential root
causes exist which make replaying traces on Petri nets hard. First, in the pres-
ence of invisible transitions, it is non-trivial to determine whether there exists a
suitable �ring sequence of invisible transitions so that the correct activities be-
come enabled for the Petri net to optimally replay a trace (a simpli�ed case is
shown in Figure 3.11: before �ring b, the invisible transition invisible should be
�red �rst). In extreme cases, it is possible that an invisible transition should be
�red even though its execution is not necessary to �re the �rst-next activity at
hand. This is often described as “non-lazy” �ring of invisible transitions, for ex-
ample, in Figure 3.12, the invisible transition invisible should be �red in order to
enable b, even although this is not required to �re a. Second, in the presence of
multiple enabled duplicate transitions, it is hard to determine the optimal �ring,
as �ring one duplicate activity a�ects the ability of the Petri net to replay the re-
maining events in the given trace (see Figure 3.13 for a simpli�ed example where
transition b is duplicated and the decision of which transitions has to be �red de-
pends on the further progression of the trace at hand). Again, in extreme cases, it
is theoretically possible that the decision to �re a non-enabled transition should
be preferred above the �ring of an enabled one, when this force �re results in an
overall better �tness result for the given trace.

Following from the description of the two main issues present in trace replay
as described above (invisible and duplicate transitions), it becomes clear that
also the evaluation of negative events should be modi�ed such that possible se-
quences of invisible transitions which would lead to the enabling of the negative

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 95

a p2

b
p3

c
d p4 e p5

invisible p1

p6

Figure 3.12: A simple process model used as an illustration for trace replay (another ex-
ample with invisible activity).

a p2

b

p3

b
p4

c d
e p5

p1

Figure 3.13: A simple process model used as an illustration for trace replay (duplicate
activity).

event under consideration should be checked as well. Consider for example the
partial trace 〈a, {b−}〉 to be evaluated on the model in Figure 3.11. Although it
would seem that, after �ring a, b is not enabled (marking M1 = {p2}, it is clear
that an invisible path exists (consisting of a single transition: invisible) which does
enable b. Remark that this approach e�ectively evaluates negative events as they
are encountered while stepping through a given trace, i.e. as this evaluation oc-
curs starting from the marking obtained after the execution of the last transition
(corresponding with a positive event), we classify this approach as being “state-
bound”.

Due to this state-boundedness, however, the technique described above is not
able to deal with cases where the decision to �re an invisible transition (or a
series of invisible transitions) leading to the enabling of a negative event under
consideration should be made before encountering the last seen positive event
(i.e. the non-lazy choices). To deal with this issue, it no longer su�ces to start
from the marking obtained after �ring the last seen positive event to evaluate
a negative event. Instead, a new trace should be constructed, consisting of the
positive event pre�x up until the negative event (i.e. all positive events before
the negative event at hand), with the negative event concatenated at the end.
The process model is then queried again (starting from the initial marking) to

96 3.6. DISCUSSED TOPICS

see whether it is able to replay this constructed (“negative”) trace. This “state-
free” approach evaluates each negative event independently from the decision
chain of transitions made before the occurrence of the negative event, but also
requires more computational time, as each evaluated negative event now entails
the construction and subsequent replay of new traces.

Another argument can be made to this regard which also illustrates the di�er-
ence between the two replay approaches outlined above, i.e. evaluating negative
events as they are encountered by stepping through the trace (state-bound)
versus evaluating negative events on their own and independently from the
currently-reached marking by constructing a new trace (state-free). One could
argue that the former state-bound approach is more in line with the way a human
end-user or running system would execute a trace, where it is deemed unlikely
that one wishes to navigate or backtrack through a labyrinth of transitions in or-
der to �nd the best �ring sequence. From this execution perspective, it thus makes
sense that we evaluate negative events from the currently-reached marking and
that we commit ourselves to earlier made decisions (meaning the sequence of
�red transitions and its resulting state). The latter described state-free method
on the other hand, where a new trace is constructed to check each negative event
independently does not correspond with the way end users execute processes,
but rather evaluate a given process model based purely on its ability to reach or
not reach certain states, i.e. from an evaluation perspective.

Let us now formalize the di�erent replay strategies and negative event evaluation
schemes as outlined above in more detail.

3.6.1.2 Replay Strategies

This section lists the various strategies which can be applied to construct a �ring
sequence fM0 ,(P,T ,F) given a trace σ. Note that, for the construction of a �ring se-
quence, only the positive events are needed, as negative events can be evaluated
separately once a �ring sequence is constructed.

Complete Replay: Full Exploration This replay strategy considers all possible
transition sequences which can be mapped to the trace σ. Algorithm 3.3 provides
a concise formalized overview of the workings of this replay strategy. For each
event encountered in the trace, a list of candidate transitions is constructed, con-
sisting of all enabled invisible activities and all transitions mapped to the event

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 97

at hand, either enabled or not. Next, the search is recursively branched on all
candidate transitions and further explored.

Note that some further optimizations can be added which are not explicitly
shown in Algorithm 3.3:

First, the list of candidate transitions can be ordered so that enabled,
mapped transitions are considered �rst, followed by invisible transitions
and �nally, disabled mapped transitions which will be force �red. This is
useful in cases where one only wishes to obtain one single �ring sequence,
preferably one containing a minimal amount of force �red transitions.

Next, in cases where one wishes to obtain the one single �ring sequence
with the absolute lowest number of force �red transitions, a complete ex-
ploration is still required, but the current best �ring sequence can then be
used to cut o� the search in cases where the �ring sequence f so far con-
tains more force �red transitions than the current best—as the number of
force �red transitions will never improve.

Third, note that some Petri nets might contain invisible transitions which,
after �ring, enable themselves once more. To prevent situations where
�ring sequences would grow to an in�nite length, a threshold on the num-
ber of subsequent invisible �rings can be added. Finally, with this thresh-
old, it is possible to enable the force �ring of invisible transitions as well,
dropping the enabled(t,m) requirement in Algorithm 3.3. Without the
subsequent invisible �ring threshold, allowing the force �ring of invisible
transitions would certainly cause �ring sequences to grow in�nitely, as
the presence of one invisible transition is enough to prevent the recursive
construction function from stopping.

Heuristic Replay: One Step Look-forward This replay strategy constructs one
single �ring sequence which can be mapped to the trace σ. For each encountered
positive event σi ∈ σ, several sets of candidate transitions are established, see
Table 3.4, top to bottom row. In case a candidate set is found, a transition is
chosen randomly from the set and �red (if the set only contains one transition,
naturally that transition is chosen).

The bene�t of this replay strategy is that no exhaustive state space exploration
needs to be performed, greatly decreasing the run time required when replaying

98 3.6. DISCUSSED TOPICS

Algorithm 3.3 Replay strategy: complete exploration. For clarity, the initial
markingM0 and Petri net (P,T ,F) are left implicit in the notation of f, similarly,
the �ring sequence f, initial marking M0 and Petri net (P,T ,F) are left implicit
in the notation of Mi.
Input: (P,T ,F),M0 % Given Petri net and initial marking
Input: σ % An event log trace
Input: µ % Transition-activity mapping µ : T 7→AL ∪ {ai ,ab}
Input: enabled : (T ×M)→ {True, False} % Function denoting if a transition is enabled under a given marking

(M is set of all possible markings)
Input: nextmarking : (T ×M)→M % Function returning the marking after (force) �ring a given transition in

a given marking
Output: Constructed set of �ring sequences F

1: F := ∅
2: f := 〈〉
3: Recurse(F, f,M0 ,σ1) % Call recursive function
4: return F
5: function Recurse(F, f,m, σi)
6: % Determine candidate transitions
7: CT := {t ∈ T |µ(t) = sigmai ∨ (ai = µ(t)∧ enabled(t,m))}
8: for all t ∈ CT do
9: f := 〈f, t〉 % Expand sequence

10: if i = |σ| then
11: % Add to set of possible sequences
12: F := F∪ f
13: else if µ(t) = ai then
14: Recurse(F, f,nextmarking(t,m),σi)
15: else
16: Recurse(F, f,nextmarking(t,m),σi+1)
17: end if
18: end for
19: end function

Table 3.4: Replay strategy: heuristic replay with one step look-forward. This replayer
iterates over various candidate transition sets (top to bottom row).

Mapped to Activity?
µ(t) = σi

Enabled?
enabled(t,m)

Firing Enables Next (current)
Activity?

∃tnext ∈ T : [µ(tn) = z∧

enabled(tn,nextmarking(t,m))]

Invisible?
µ(t) = ai

Outcome

yes yes yes (z = σi+1) no Preferred normal �re
yes yes no (z = σi+1) no Normal �re
– yes yes (z = σi) yes Enabling invisible �re
– yes no (z = σi) yes Greedy invisible �re

(optional)
yes no yes (z = σi+1) no Preferred forced �re
yes no no (z = σi+1) no Forced �re
no yes yes (z = σi) no Recovering model-only �re

(optional)
– no yes (z = σi) yes Recovering model-only

forced invisible �re
(optional)

no no yes (z = σi) no Recovering model-only
forced �re (optional)

no no no no Log-only move (no
transition �red)

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 99

traces. Additionally, this replay strategy corresponds with how human end-users
interpret process models. Note that Table 3.4 contains some optional candidate
sets. First of all, it is possible to enable greedy �ring of invisible tasks. In some
cases, this can be bene�cial for when a one step look-forward is not su�cient to
�nd an invisible �ring subsequence to enable the positive activity at hand. On the
other hand, greedy �ring of invisible can cause the constructed �ring sequence to
contain redundant invisible transitions, which are �red but do not actually help
in enabling the next non-invisible transition at hand, which is still ultimately
force �red. As such, in most cases, it is best to skip this candidate transition set (if
long invisible subsequences exist which lead to the enabling of the next positive
activity, it is better to use the next replay strategy, which performs an invisible
path exploration). Second, note the presence of model-only moves. Considering
these candidate transition sets brings the heuristic procedure closer to alignment
based evaluation schemes [112], whilst still retaining scalability. Algorithm 3.4
formalizes this replay strategy.

Heuristic Replay: Invisible Path Exploration This replay strategy also constructs
one single �ring sequence which can be mapped to the trace σ. Algorithm 3.5
provides a concise formalized overview of the workings of this replay strategy.
This replay strategy also implements a heuristic approach, but contrary to the
earlier one step look-forward technique, this approach attempts to explore “invis-
ible paths” to immediately �nd the shortest invisible transition path necessary
in order to �re the positive event at hand. Some optimizations can be imple-
mented in order to improve the performance of function FindShortest in Algo-
rithm 3.5. First, a limit can be set on the “depth” of the search, discarding paths
with more than a certain number of steps, as it can be argued that the quality
of process models requiring many invisible transition executions is lower than
counterparts who do not require many silent executions. Next, it is possible to
implement the search procedure in a depth �rst or breadth �rst manner. The
optimal strategy is to combine the two and to perform a breadth �rst search �rst
for a small amount of steps (say, paths of size three) before performing a deep
exploration with depth �rst search. This approach is comparable to the replay
strategy discussed in [99, 100]. Note that, for the multitude of Petri nets, invisible
transition execution paths preceding the execution of a non-invisible transition
will normally not be of great length, as even for Petri nets containing a multitude
of routing invisible transitions, one invisible transition execution often su�ces
in order to reach the desired non-invisible transition, see for example the con-
nectedModel in Figure 3.1.

100 3.6. DISCUSSED TOPICS

Algorithm 3.4 Replay strategy: heuristic replay with one step look-forward.
Input: (P,T ,F),M0 % Given Petri net and initial marking
Input: σ % An event log trace
Input: µ % Transition-activity mapping µ : T 7→AL ∪ {ai ,ab}
Input: enabled : (T ×M)→ {True, False} % Function denoting if a transition is enabled under a given marking

(M is set of all possible markings)
Input: nextmarking : (T ×M)→M % Function returning the marking after (force) �ring a given transition in

a given marking
Input: random : T ′ ⊆ T → T % Function returning random transition from a given set of transitions
Output: Constructed �ring sequences f

1: f := 〈〉
2: i := 1
3: m :=M0
4: while i 6 |σ| do
5: % Construct candidate transition sets
6: MT := {t ∈ T |µ(t) = σi}, ET := {t ∈ T |enabled(t,m)}
7: VT := {t ∈ T |µ(t) 6= ai}, IT := {t ∈ T |µ(t) = ai}
8: CET := {t ∈ T |∃tn ∈ T : [µ(tn) = σi ∧ enabled(tn ,nextmarking(t,m))]}
9: NET := {t ∈ T |∃tn ∈ T : [µ(tn) = σi+1 ∧ enabled(tn ,nextmarking(t,m))]}

10: % Determine transition
11: if |MT ∩ET ∩NET | > 0 then
12: t := random(MT ∩ET ∩NET)
13: f := 〈f, t〉,m := nextmarking(t,m)
14: i := i+ 1
15: else if |MT ∩ET | > 0 then
16: t := random(MT ∩ET)
17: f := 〈f, t〉,m := nextmarking(t,m)
18: i := i+ 1
19: else if |IT ∩ET ∩CET | > 0 then
20: t := random(IT ∩ET ∩CET)
21: f := 〈f, t〉,m := nextmarking(t,m)
22: else if |MT ∩NET | > 0 then
23: t := random(MT ∩NET)
24: f := 〈f, t〉,m := nextmarking(t,m)
25: i := i+ 1
26: else if |MT | > 0 then
27: t := random(MT)
28: f := 〈f, t〉,m := nextmarking(t,m)
29: i := i+ 1
30: else if |VT ∩ET ∩CET | > 0 then
31: t := random(VT ∩ET ∩CET)
32: f := 〈f, t〉,m := nextmarking(t,m)
33: i := i+ 1
34: else if |IT ∩CET | > 0 then
35: t := random(IT ∩CET)
36: f := 〈f, t〉,m := nextmarking(t,m)
37: else if |VT ∩CET | > 0 then
38: t := random(VT ∩CET)
39: f := 〈f, t〉,m := nextmarking(t,m)
40: i := i+ 1
41: else
42: % No transition �red
43: i := i+ 1
44: end if
45: end while
46: return f

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 101

Algorithm 3.5 Replay strategy: heuristic replay with invisible path exploration.
Input: (P,T ,F),M0 % Given Petri net and initial marking
Input: σ % An event log trace
Input: µ % Transition-activity mapping µ : T 7→AL ∪ {ai ,ab}
Input: enabled : (T ×M)→ {True, False} % Function denoting if a transition is enabled under a given marking

(M is set of all possible markings)
Input: nextmarking : (T ×M)→M % Function returning the marking after (force) �ring a given transition in

a given marking
Input: random : T ′ ⊆ T → T % Function returning random transition from a given set of transitions
Output: Constructed �ring sequences f

1: f := 〈〉
2: m :=M0
3: for all σi ∈ σ do
4: % Find the shortest sequence of invisible transitions in order to enable a transition mapped to σi . The

transition mapped toσi is concatenated at the end. If a transition mapped toσi is already enabled under the
current marking, the shortest sequence just contains this single transition without any invisible transitions.
When no path can be found to enable a transition mapped to σi , the sequence is empty.

5: in := FindShortest(m,σi)
6: if in = ∅ then
7: t := random(t ∈ T |µ(t) = σi)
8: f := 〈f, t〉
9: m := nextmarking(t,m)

10: else
11: f := 〈f, in〉
12: ∀t ∈ in : [m := nextmarking(t,m)]
13: end if
14: end for

15: return f

3.6.1.3 Evaluation Schemes

After having outlined di�erent strategies to construct a �ring sequence over a
trace containing positive events, we now turn our attention to the evaluation of
negative events. As discussed earlier, we make a di�erence between state-bound
evaluation schemes, which evaluate negative events given the state of the model
obtained after �ring the last-seen positive events and state-free schemes, which
evaluates negative events independently from the decision chain of transitions
made before the occurrence of the negative event.

State-bound: First Marking Only Let us consider the following trace and as-
sociated �ring sequence, found by applying one of the aforementioned replay
strategies:

fM0 ,(P,T ,F) a inv1 inv2 inv3 b c d

σ a – – – b c d
.

We now wish to check whether the process model at hand permits the negative
event n−, inserted right before the execution of b in σ. A �rst way to so do

102 3.6. DISCUSSED TOPICS

is to take the marking obtained after �ring a (i.e. M1) and check whether a
transition mapped to n is enabled in this marking. If so, then the model should
be punished on its precision dimension. This is the approach followed in [2].
Variations on this evaluation scheme include: “Last Marking Only”, which in
this case would check if a transition mapped to n is enabled given the marking
reached after �ring inv3, i.e. right before �ring b and “First and Last Marking
Only”, which checks both markings. However, as was also discussed before, we
have to consider invisible transition paths as well in order to determine whether
to process model allows to �re n after having �red a. A �rst possible approach
towards doing so is to assume the invisible transition path as followed by the
constructed �ring sequence as �xed and bind the evaluation of negative events
to this path.

State-bound: Using Constructed Invisible Transition Path We consider again the
same trace and �ring sequence. Instead of checking whether negative event n−

is enabled by binding the evaluation to a single marking, we now check each
marking visited by the constructed �ring sequence starting from the marking
obtained after �ring the last positive event at hand and before �ring the next
positive event, that is, the markings M1, M2, M3, M4 obtained after �ring a,
inv1, inv2 and inv3 respectively. If there exists a transition mapped to n which
is enabled under one of these visited markings, the model is punished on its
precision dimension. Note that it is possible to construct a “lenient” form of this
check where an enabled transition mapped to n should exist for each marking
visited. As this performs a very weak check where only very imprecise models
will be punished, this approach is not recommended.

State-bound: Using Free Invisible Transition Path The last state-bound negative
event evaluation technique also assumes a constructed �ring sequence, but now
starts from the marking obtained after �ring the last-seen positive event (M1

after a) and explores all invisible transition paths to see whether the model is
able to enable to �ring of n−, using the same FindShortest function as was also
applied in Algorithm 3.5. This evaluation scheme thus no longer binds itself to the
invisible path used to reach the next positive event, as we e�ectively desire to �nd
an answer to the question: “After �ring the last positive event, would the model
have been able to execute the following negative event?” Since the next positive
event is not yet known at this time, the model is free to perform an invisible path
exploration to answer this query. However, since such an exploration requires

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 103

more computational time, users might nevertheless choose to bind the evaluation
to the �ring sequence and its invisible �rings.

State-free Evaluation Situations might exist where the decision to �re an invis-
ible transition leading to the enabling of a negative event under consideration
(n− before b) should be made before encountering the last seen positive event
(i.e. before a). For example, an invisible transition inv0 might have been enabled
in the starting marking, which was not included in the �ring sequence (as a was
also enabled in the starting marking), but might have enabled transitions for both
a and n− after �ring a). None of the state-bound approaches are able to uncover
these cases. To perform a state-free evaluation, a new trace is constructed con-
sisting of the positive event pre�x up until the negative event with the negative
event concatenated at the end, i.e. 〈a,n〉 in this example. This trace is then re-
played on the process model (using one of the replay strategies outlined above) to
see whether it is able to replay this “negative trace”. Note however that end-users
do not often think to evaluate negative events in this manner, as the decision to
�re the previous positive event is already made by the time the negative event
arrives, and the future of running traces is not known at execution-time.

3.6.1.4 Dealing with Forced Firings

It should be noted that it is hard to check negative events using the state-free
evaluation approach when the positive event pre�x so far has caused transitions
to be force �red, or when allowing transitions to be force �red to determine
whether n ever becomes enabled. That is, if force �ring would be allowed in
order to determine whether a negative event (following a positive pre�x) is ac-
cepted by the process model or not, it would follow that many negative events
will be accepted (thus lowering the ultimate precision score), as the model will
attempt to force �re any possible transition which leads to the enabling of the
(�nal) negative event. Therefore, we do not permit force �ring when evaluating
negative events in this manner.

However, by not doing so, it can be argued that the heuristic state-bound ap-
proaches described above su�er from a similar limitation: as the force �ring of
transitions also produces additional tokens which may subsequently lead to the en-
abling of negative events. Other evaluation approaches found in literature also
encounter this issue. In [2], for example, the choice is made to allow this. Force

104 3.6. DISCUSSED TOPICS

�ring is thereby accepted as an intrinsic part of Petri net semantics and should
thus be taken into account when evaluating precision and generalization; the au-
thors argue that this compensates for the remaining tokens which are not pun-
ished by the �tness metric after replay. In [105], on the other hand, traces are
only evaluated in terms of precision up until the point where the �rst force �ring
occurs.

Note that not all force �red transitions lead inde�nitely to an “unstable” state un-
til the end of the trace is reached, although determining a method to resolve these
instabilities for more complex cases is a non-trivial problem. Therefore, we list
the following options to deal with force �red transitions for state-bound evalua-
tion approaches (the state-free evaluation disallows force �ring when evaluating
negative events): stop the evaluation of negative events after a force �re; only
check negative events which do not directly follow a positive event for which
a transition was force �red; or check all negative events nevertheless the force
�rings executed.

Adriansyah et al. [108–112] have proposed a replay technique which avoids force
�ring altogether by allowing the process model and log to move independently,
resulting in a so-called model-log alignment. This technique can be regarded as a
fourth possible replay strategy. Using this approach, we evaluate positive events
based on whether the event under consideration could be successfully aligned
with a transition execution in the process model (opposite to checking positive
events based on whether they were force �red or not as with the other replay
strategies). Negative events can be evaluated using the evaluation techniques as
described above, starting from the marking obtained after the last aligned model-
log move.

3.6.1.5 Experimental Results

In order to assess the impact of the discussed replay strategies, negative event
evaluation schemes and manners to deal with force �rings, we set up an experi-
ment using the process models and event log as shown in Figure 3.1. We evaluate
the �tness, precision and generalization capabilities of these models using our
proposed Behavioral Recall (rB), Behavioral Precision (pB) and Behavioral Gener-
alization (gB) metrics. Note that we do not weight the generated negative events
as to clearly assess the impact of the various replay strategies and negative event
evaluation schemes on conformance checking results. We evaluate these models

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 105

(for which the desired quality assessment is known beforehand) over an exhaus-
tive set of parameter combinations. Expected �tness (“F+/-”), precision (“P+/-”)
and generalization (“G+/-”) are depicted for each model:

For the perfectModel, the results in Table 3.5 show that each con�guration
vector returns the same result in this case, with maximal recall, precision
and generalization scores, as desired.

Since singleModel is not �tting (see results in Table 3.6), the impact of the
di�erent ways to handle force �red transitions becomes apparent here. It
is also interesting to note that the alignment based replay strategy avoids
force �ring by allowing the model and the log to move independently,
but this increased amount of “non-aligned” moves causes that the model
is punished more on the dimensions of recall and precision. We cannot
observe a di�erence between di�erent replay strategies or negative event
evaluation schemes for this model.

The results in Table 3.7 show that the �owerModel can be easily and cor-
rectly be evaluated in terms of �tness, precision and generalization. All
con�gurations return the same values.

The stackedModel illustrates an important di�erence between state-bound
and state-free evaluation techniques (see Table 3.8), which is especially
visible on generalization values as shown above. State-bound evaluation
techniques consider the currently-reached marking as �xed and will not
backtrack through the execution history to investigate whether di�erent
choices might have led to di�erent results. State-free techniques on the
other hand do start from the initial marking, with the goal of investigat-
ing whether a negative event could be accepted by the process model or
not, following a certain activity sequence. Since the stackedModel binds
the user to a certain path from the beginning, the ability to generalize will
thus be negatively impacted by this binding. In most cases, the state-bound
perspective will be preferred in evaluation experiments such as these, al-
though the ability thus exist to opt for a state-free approach as well, where
each negative event will be queried independently from the current con-
text. In addition, we also note a clear di�erence in the performance of the
various replay strategies in this case, as heuristic approaches are not able
to determine the correct path to follow to satisfy the remainder of the trace
at the beginning of trace replay. Still, this is not so much a weak point of
heuristic approaches, as it can be said that in an execution environment

106 3.6. DISCUSSED TOPICS

(i.e. a running system), it is also infeasible to determine which decision to
choice without knowing the future behavior of the trace at hand.

The connectedModel is comparable with a �ower model in terms of qual-
ity (see Table 3.9). Just as with the �owerModel, a con�guration vector is
easily found which correctly returns the expected values. However, re-
mark here the di�erence between the various negative event evaluation
schemes. Since the lenient evaluation strategies consider the transition
sequence between the positive events as given, this approach will fail to
detect any precision errors, since all of them require an investigation of
“invisible” paths outside the one actually followed to execute the next pos-
itive event. Finally, another interesting remark is the fact that event heuris-
tic replay strategies remain able to correctly assess connectedModel’s on
the dimension of �tness, even although so many invisible transitions are
present. This shows that, ever for complex Petri nets, a one look-forward
heuristic approach is oftentimes su�cient to correctly deduce the correct
invisible transition(s) to �re.

3.6.1.6 Concluding Remarks

We have discussed in depth the problem of replaying event traces on Petri nets
for sequences containing both positive and negative events, together with a de-
scription of di�erent schemes to evaluate negative events in order to investigate
the impact of these strategies and techniques on conformance checking metrics
which make use of both positive and negative events to assess process models
on the quality dimensions of recall, precision and generalization. After having
performed a thorough experimental evaluation of the discussed replay strategies
and negative event evaluations schemes, it was decided to include two di�erent
approaches in the conformance checking framework described in this chapter:

1. First, a heuristic replayer performing a one look-forward investigation, as
was detailed in this section.

2. An alignment based strategy as proposed by [108–110].

In both cases, negative events are evaluated by performing a state-bound full in-
visible path exploration (i.e. not bound to the invisible path chosen for the posi-
tive event �ring sequence), ignoring negative events directly following a positive

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 107

Table 3.5: Impact of various replay strategies and negative event evaluation schemes for
perfectModel.

h
j

e

i

f

c

a

b

k

d

g

Model: perfectModel (Reference
Model):
F+, P+, G+

Replayer Evaluation Forced Fire Handling rB pB gB

One-step Lookforward
(Conservative)

State-bound: First Marking Check All 1.00 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Constructed Invisible Path Check All 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Free Invisible Path Check All 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-free n/a 1.00 1.00

One-step Lookforward

State-bound: First Marking Check All 1.00 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Constructed Invisible Path Check All 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Free Invisible Path Check All 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-free n/a 1.00 1.00

Invisible Path Exploration

State-bound: First Marking Check All 1.00 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Constructed Invisible Path Check All 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Free Invisible Path Check All 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-free n/a 1.00 1.00

Complete Exploration

State-bound: First Marking Check All 1.00 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Constructed Invisible Path Check All 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Free Invisible Path Check All 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-free n/a 1.00 1.00
Alignment Based n/a n/a 1.00 1.00 1.00

108 3.6. DISCUSSED TOPICS

Table 3.6: Impact of various replay strategies and negative event evaluation schemes for
singleModel.

a e kdc

Model: singleModel (Single Path
Model):
F-, P+, G-

Replayer Evaluation Forced Fire Handling rB pB gB

One-step Lookforward
(Conservative)

State-bound: First Marking Check All 0.38 0.83 0.00
Check Only After Non-forced 0.91 0.00
Stop After Forced 1.00 0.00

State-bound: Constructed Invisible Path Check All 0.83 0.00
Check Only After Non-forced 0.91 0.00
Stop After Forced 1.00 0.00

State-bound: Free Invisible Path Check All 0.83 0.00
Check Only After Non-forced 0.91 0.00
Stop After Forced 1.00 0.00

State-free n/a 1.00 0.00

One-step Lookforward

State-bound: First Marking Check All 0.38 0.83 0.00
Check Only After Non-forced 0.91 0.00
Stop After Forced 1.00 0.00

State-bound: Constructed Invisible Path Check All 0.83 0.00
Check Only After Non-forced 0.91 0.00
Stop After Forced 1.00 0.00

State-bound: Free Invisible Path Check All 0.83 0.00
Check Only After Non-forced 0.91 0.00
Stop After Forced 1.00 0.00

State-free n/a 1.00 0.00

Invisible Path Exploration

State-bound: First Marking Check All 0.38 0.83 0.00
Check Only After Non-forced 0.91 0.00
Stop After Forced 1.00 0.00

State-bound: Constructed Invisible Path Check All 0.83 0.00
Check Only After Non-forced 0.91 0.00
Stop After Forced 1.00 0.00

State-bound: Free Invisible Path Check All 0.83 0.00
Check Only After Non-forced 0.91 0.00
Stop After Forced 1.00 0.00

State-free n/a 1.00 0.00

Complete Exploration

State-bound: First Marking Check All 0.38 0.83 0.00
Check Only After Non-forced 0.91 0.00
Stop After Forced 1.00 0.00

State-bound: Constructed Invisible Path Check All 0.83 0.00
Check Only After Non-forced 0.91 0.00
Stop After Forced 1.00 0.00

State-bound: Free Invisible Path Check All 0.83 0.00
Check Only After Non-forced 0.91 0.00
Stop After Forced 1.00 0.00

State-free n/a 1.00 0.00
Alignment Based n/a n/a 0.45 0.46 0.04

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 109

Table 3.7: Impact of various replay strategies and negative event evaluation schemes for
�owerModel.

b e

f

dc

k

i h
g

a

j Model: �owerModel (Flower
Model):
F+, P-, G+

Replayer Evaluation Forced Fire Handling rB pB gB

One-step Lookforward
(Conservative)

State-bound: First Marking Check All 1.00 0.12 1.00
Check Only After Non-forced 0.12 1.00
Stop After Forced 0.12 1.00

State-bound: Constructed Invisible Path Check All 0.12 1.00
Check Only After Non-forced 0.12 1.00
Stop After Forced 0.12 1.00

State-bound: Free Invisible Path Check All 0.12 1.00
Check Only After Non-forced 0.12 1.00
Stop After Forced 0.12 1.00

State-free n/a 0.12 1.00

One-step Lookforward

State-bound: First Marking Check All 1.00 0.12 1.00
Check Only After Non-forced 0.12 1.00
Stop After Forced 0.12 1.00

State-bound: Constructed Invisible Path Check All 0.12 1.00
Check Only After Non-forced 0.12 1.00
Stop After Forced 0.12 1.00

State-bound: Free Invisible Path Check All 0.12 1.00
Check Only After Non-forced 0.12 1.00
Stop After Forced 0.12 1.00

State-free n/a 0.12 1.00

Invisible Path Exploration

State-bound: First Marking Check All 1.00 0.12 1.00
Check Only After Non-forced 0.12 1.00
Stop After Forced 0.12 1.00

State-bound: Constructed Invisible Path Check All 0.12 1.00
Check Only After Non-forced 0.12 1.00
Stop After Forced 0.12 1.00

State-bound: Free Invisible Path Check All 0.12 1.00
Check Only After Non-forced 0.12 1.00
Stop After Forced 0.12 1.00

State-free n/a 0.12 1.00

Complete Exploration

State-bound: First Marking Check All 1.00 0.12 1.00
Check Only After Non-forced 0.12 1.00
Stop After Forced 0.12 1.00

State-bound: Constructed Invisible Path Check All 0.12 1.00
Check Only After Non-forced 0.12 1.00
Stop After Forced 0.12 1.00

State-bound: Free Invisible Path Check All 0.12 1.00
Check Only After Non-forced 0.12 1.00
Stop After Forced 0.12 1.00

State-free n/a 0.12 1.00
Alignment Based n/a n/a 1.00 0.12 1.00

110 3.6. DISCUSSED TOPICS

Table 3.8: Impact of various replay strategies and negative event evaluation schemes for
stackedModel.

a

b

... 12 other trace paths ...

a

a c

j

d

h

h

k

g

e

ig

k

k

j

b

i

Model: stackedModel (Stacked
Model):
F+, P+, G-

Replayer Evaluation Forced Fire Handling rB pB gB

One-step Lookforward
(Conservative)

State-bound: First Marking Check All 0.84 0.54 0.05
Check Only After Non-forced 0.79 0.01
Stop After Forced 1.00 0.01

State-bound: Constructed Invisible Path Check All 0.52 0.13
Check Only After Non-forced 0.86 0.13
Stop After Forced 1.00 0.00

State-bound: Free Invisible Path Check All 0.52 0.17
Check Only After Non-forced 0.69 0.02
Stop After Forced 1.00 0.01

State-free n/a 1.00 1.00

One-step Lookforward

State-bound: First Marking Check All 0.84 0.55 0.10
Check Only After Non-forced 0.70 0.00
Stop After Forced 1.00 0.00

State-bound: Constructed Invisible Path Check All 0.55 0.11
Check Only After Non-forced 0.67 0.00
Stop After Forced 1.00 0.02

State-bound: Free Invisible Path Check All 0.50 0.11
Check Only After Non-forced 0.81 0.00
Stop After Forced 1.00 0.01

State-free n/a 1.00 1.00

Invisible Path Exploration

State-bound: First Marking Check All 0.84 0.71 0.22
Check Only After Non-forced 0.81 0.37
Stop After Forced 1.00 0.38

State-bound: Constructed Invisible Path Check All 0.62 0.40
Check Only After Non-forced 0.83 0.46
Stop After Forced 1.00 0.32

State-bound: Free Invisible Path Check All 0.69 0.34
Check Only After Non-forced 0.77 0.33
Stop After Forced 1.00 0.26

State-free n/a 1.00 1.00

Complete Exploration

State-bound: First Marking Check All 1.00 1.00 0.00
Check Only After Non-forced 1.00 0.00
Stop After Forced 1.00 0.00

State-bound: Constructed Invisible Path Check All 1.00 0.00
Check Only After Non-forced 1.00 0.00
Stop After Forced 1.00 0.00

State-bound: Free Invisible Path Check All 1.00 0.00
Check Only After Non-forced 1.00 0.00
Stop After Forced 1.00 0.00

State-free n/a 1.00 1.00
Alignment Based n/a n/a 1.00 1.00 0.00

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 111

Table 3.9: Impact of various replay strategies and negative event evaluation schemes for
connectedModel.

b

i

k

j

g

a

e

f

h

c

d Model: connectedModel (Fully
Connected Model):
F+, P-, G+

Replayer Evaluation Forced Fire Handling rB pB gB

One-step Lookforward
(Conservative)

State-bound: First Marking Check All 1.00 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Constructed Invisible Path Check All 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Free Invisible Path Check All 0.13 1.00
Check Only After Non-forced 0.13 1.00
Stop After Forced 0.13 1.00

State-free n/a 0.13 1.00

One-step Lookforward

State-bound: First Marking Check All 1.00 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Constructed Invisible Path Check All 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Free Invisible Path Check All 0.13 1.00
Check Only After Non-forced 0.13 1.00
Stop After Forced 0.13 1.00

State-free n/a 0.13 1.00

Invisible Path Exploration

State-bound: First Marking Check All 1.00 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Constructed Invisible Path Check All 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Free Invisible Path Check All 0.13 1.00
Check Only After Non-forced 0.13 1.00
Stop After Forced 0.13 1.00

State-free n/a 0.13 1.00

Complete Exploration

State-bound: First Marking Check All 1.00 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Constructed Invisible Path Check All 1.00 1.00
Check Only After Non-forced 1.00 1.00
Stop After Forced 1.00 1.00

State-bound: Free Invisible Path Check All 0.13 1.00
Check Only After Non-forced 0.13 1.00
Stop After Forced 0.13 1.00

State-free n/a 0.13 1.00
Alignment Based n/a n/a 1.00 0.13 1.00

112 3.6. DISCUSSED TOPICS

event for which a transition was force �red. Our experiments show that these
approaches o�er the optimal tradeo� between understandability, speed and ac-
curacy.

3.6.2 Additional Con�guration Parameters

This section lists some additional con�guration parameters which were included
in our implementation. They are meant to be used by expert end-users and added
for completeness. In the experimental evaluation (Section 3.5), none of these
additional con�guration parameters were considered:

3.6.2.1 Alternative Window Ratio

An alternative window ratio for assessing the impact of a generalized event. By
default, the impact of a negative event on generalization is equal to:
1−Min∀window comparisons(

|window|−|matching window|
|window|) or, also:

Max∀window comparisons(
|matching window|

|window|) i.e. the maximal matching window ratio
found over all window comparisons performed. We can also de�ne an alterna-
tive ratio, the minimal matching window ration which is de�ned as:
Min∀window comparisons(

|matching window|
|window|), so that the contribution of a negative event

to generalization is no longer the direct inverse of its contribution to precision.
In general, enabling this option causes the weight of a generalized event to drop,
meaning that a less strict evaluation will be performed in terms of generaliza-
tion. Note that this is a valid strategy towards making the Weighted Behavioral
Generalization metric more lenient.

3.6.2.2 Cutted Windows

By default, the complete window before the candidate negative event is consid-
ered for comparison. However, it is also possible to only consider the window
before an activity equal to the positive activity at the current position is encoun-
tered. For example, when we aim to check the candidate negative event n− in a
σ = 〈a,b,c,a,b,c,a,b, {n−},c〉, the window stemming from this would be equal
to 〈a,b〉 and not 〈a,b,c,a,b,c,a,b〉. This makes the window comparison more
lenient.

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 113

In general, enabling this option causes the weight of a negative event to drop,
meaning that a less strict evaluation will be performed in terms of precision. In
most event logs, the di�erence is negligible, however, but users might wish to
consider this option when the event log at hand contains recurrent behavior and
very long traces.

3.6.2.3 Con�gurable Window Sizes

By default, the complete window before the candidate negative event is consid-
ered for comparison. However, like in the original algorithm, it is also possible
to bind the size of the window. This can be con�gured both for the calculation
of a negative event’s impact on precision and generalization.
In general, lowering the size of the window causes the weight of a negative event
to drop, meaning that a less strict evaluation will be performed in terms of preci-
sion. In most cases, we recommend to keep the window sizes as is, i.e. unlimited
size, as the weighting ratios itself are su�cient to deal with the problem of event
log completeness, as was illustrated before.

3.6.2.4 Weight Threshold

Whereas currently all negative events are taken into account for the calculation
of the precision and generalization metrics, it is also possible to allow the user
to supply a threshold based on which negative events can be discarded when
evaluating precision and generalization (e.g. consider only negative events with
a weight above 0.8 to calculate precision). As an interesting remark, we note
that it would be possible to o�er a threshold suggestion by �tting a two gaussian
mixture model on the distribution of weights as generated for all negative events.
Figure 3.14 shows how such an approach would work in practice.
In most cases, this is not necessary, however, as the weights themselves are robust
enough so that no additional �ltering is needed.

114 3.6. DISCUSSED TOPICS

Event log a5. Event log a5 (with noise).

Event log driversLicenseLoop. Event log driversLicenseLoop (with
noise).

Figure 3.14: Derived cuto� threshold for distinguishing between (in)correct negative
events as derived by a two gaussian mixture model. The gray lines indicate density plots
of the negative events based on their true status, whereas the black lines denote the two
�tted gaussians, with the overlap point indicated as a vertical line. Note that the “true”
status is shown only for completeness; naturally, it is not taken into consideration when
deriving the threshold.

3.6.3 Alternative Generation Strategies

The generation of negative events for a position in a trace considers the pre�x of
the trace up to this position. Readers might wonder why it is su�cient to consider
only the pre�x up to a position and to neglect the su�x. In addition, readers
might also wonder if it is possible to consider less strict pre�xes (and su�xes) to

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 115

drive the generation of negative events. In principle, all of the following options
are possible, in line with the transition system discovery algorithm presented
in [79]:

Ordered sequence, i.e. a window. This is what is done in our induction
approach.

A bag: a multiset of activities having occurred before the candidate nega-
tive event.

A set of activities having occurred before the candidate negative event.

First, to tackle the issue of considering su�xes, in running process support in-
formation systems, it is rather uncommon that one is able to look into the future
to see which event executions are coming up. As such, the ability of a process
model to parse a positive or negative event (i.e. any attempt at executing a task)
can be based on historical information only. Put in more technical terms: an ex-
ecution history is su�cient (together with an initial marking) to bring a process
model in a state or set of states from which the set of enabled and non-enabled
tasks can be derived. Concerning post-hoc replay, however, it is true that con-
sidering the full trace can help to determine the most optimal path throughout
the process model (this is done for example by the alignment based replay tech-
niques), but we argue that actual process model execution semantics should not
be determined based on future events. Note also that when an event log would
be absolutely complete, the pre�xes are also su�cient to generate all negative
events, without considering the su�x.

Considering other pre�x representations, we have performed an experiment
where negative events are induced based on a bag representation (allowing free-
dom in terms of ordering), with the weight of a negative event based on the
“minimum unmatching bag ratio”, i.e. one minus the fraction of activities in
the current positive’s event window also present in the comparison window at
hand). Table 3.10 lists the results of this alternative approach for the arti�cial
event logs included in the experimental evaluation of this chapter.

From the results, we can conclude that the activity bag based approach is unable
to return a good precision/generalization measure in many cases. Although it is
possible to experiment with other mixed representation schemes, i.e. an ordered
set, we conclude that the approach based on event windows performs robustly
and correctly in practice and is thus put forward as the recommended generation
strategy.

116 3.6. DISCUSSED TOPICS

Ta
bl

e
3.1

0:
Co

m
pa

ris
on

of
w

in
do

w
pr

e�
x

ba
se

d
w

ei
gh

te
d

ar
ti�

ci
al

ne
ga

tiv
e

ev
en

tg
en

er
at

io
n

w
ith

ac
tiv

ity
ba

g
ba

se
d

in
du

ct
io

n
st

ra
te

gy
.

Ev
en

t
Lo

g
p
w B

(h
eu

ris
tic

)
p
w B

(a
lig

nm
en

t)
g
w B

(h
eu

ris
tic

)
g
w B

(a
lig

nm
en

t)

p
w B

(b
ag

s;
he

ur
ist

ic
)

p
w B

(b
ag

s;
al

ig
nm

en
t)

g
w B

(b
ag

s;
he

ur
ist

ic
)

p
w B

(b
ag

s;
al

ig
nm

en
t)

a1
0s
ki
p

1.0
0

1.0
0

0.9
1

0.9
1

1.0
0

1.0
0

0.0
5

0.0
5

a1
2

1.0
0

1.0
0

0.8
3

0.8
3

1.0
0

1.0
0

0.0
4

0.0
4

a5
1.0

0
1.0

0
0.8

8
0.8

8
1.0

0
1.0

0
0.1

6
0.1

6
a6
nf
c

0.9
4

1.0
0

0.6
1

0.6
1

0.9
8

1.0
0

0.0
5

0.0
4

a7
1.0

0
1.0

0
0.7

0
0.7

0
1.0

0
1.0

0
0.1

6
0.1

6
a8

1.0
0

1.0
0

0.9
4

0.9
4

1.0
0

1.0
0

0.0
8

0.0
8

be
ta
Si
m
pl
i�
ed

1.0
0

1.0
0

0.7
0

0.7
0

1.0
0

1.0
0

0.0
2

0.0
2

ch
oi
ce

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

0.0
7

0.0
7

co
m
pl
ex

0.7
3

0.7
4

0.5
1

0.5
1

1.0
0

1.0
0

0.0
9

0.0
9

dr
iv
er
sL
ic
en
se

1.0
0

1.0
0

0.8
0

0.8
0

1.0
0

1.0
0

0.0
3

0.0
3

dr
iv
er
sL
ic
en
se
Lo
op

0.9
7

0.9
7

0.8
3

0.8
3

1.0
0

1.0
0

0.0
6

0.0
6

he
rb
st
Fi
g3
p4

0.9
9

0.9
9

0.9
4

0.9
4

1.0
0

1.0
0

0.0
5

0.0
5

he
rb
st
Fi
g5
p1
9

1.0
0

1.0
0

0.7
7

0.7
7

1.0
0

1.0
0

0.1
0

0.1
0

he
rb
st
Fi
g6
p1
8

0.9
7

0.9
7

1.0
0

1.0
0

1.0
0

1.0
0

0.1
2

0.1
2

he
rb
st
Fi
g6
p3
1

1.0
0

1.0
0

0.5
7

0.5
7

1.0
0

1.0
0

0.1
0

0.1
0

he
rb
st
Fi
g6
p3
6

1.0
0

1.0
0

0.5
7

0.5
7

1.0
0

1.0
0

0.0
2

0.0
2

he
rb
st
Fi
g6
p3
8

1.0
0

1.0
0

0.4
0

0.5
0

1.0
0

1.0
0

0.0
8

0.0
6

he
rb
st
Fi
g6
p4
1

1.0
0

1.0
0

0.7
3

0.7
3

1.0
0

1.0
0

0.0
3

0.0
3

l2
l

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

0.1
0

0.1
0

l2
lO
pt
io
na

l
1.0

0
1.0

0
1.0

0
1.0

0
1.0

0
1.0

0
0.1

2
0.1

2
l2
lS
ki
p

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

0.0
8

0.0
8

co
nf
D
im

Pe
rf
ec
t

1.0
0

1.0
0

0.8
4

0.8
4

1.0
0

1.0
0

0.0
7

0.0
7

co
nf
D
im

C
on
ne
ct
ed

0.1
3

0.1
3

1.0
0

1.0
0

0.3
8

0.3
8

0.8
8

0.8
8

co
nf
D
im

Fl
ow

er
0.1

2
0.1

2
1.0

0
1.0

0
0.3

6
0.3

6
1.0

0
1.0

0
co
nf
D
im

Si
ng
le

0.4
1

0.4
6

0.2
3

0.0
3

0.5
7

1.0
0

0.0
6

0.0
9

co
nf
D
im

St
ac
ke
d

0.7
0

1.0
0

0.3
6

0.0
0

0.9
0

1.0
0

0.0
8

0.0
0

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 117

3.6.4 Dealing with Noise

Our proposed weighting scheme for negative events ignores how often a certain
trace has been observed in the log. This means that, in the extreme case, a weight
of 0 of a negative event means that there is a trace with the same pre�x up until
an activity equal to the candidate negative under consideration. However, it does
not matter whether one or hundreds of such traces have been observed in the log.
In cases where absence of noise is assumed, this poses no issue, as the frequency
of traces is still taken into account when performing the actual evaluation on the
event log. In cases where noise is present, however, it might be the case that this
0 weighting follows from a single, noisy trace.

The aspect of noise in event logs is very broad and can involve many di�er-
ent types of deviations, ranging from missing events, swapped events, replaced
events or inserted events. For many of these, frequency based, statistical ap-
proaches can be developed which can serve to “�lter” the event log before con-
sidering it in further analysis steps, whether it be process discovery or induction
of negative events. As such, we have chosen to avoid the aspect of noise in the
negative induction algorithm and consider noise to be an issue which needs to
be dealt with using a separate class of algorithms before any other analysis steps
are performed, were it can be assumed that the event log is free of disturbing
noise.

As an exercise, we might, however, consider the aspect of trace frequencies to
determine the weight of a negative event. The main challenge here is that it is
not quite trivial to propose a threshold or modi�ed weighting mechanism which
does take into account the trace frequency when deciding on the score given
to a negative event, while also remaining robust to skewed or unbalanced trace
frequency distributions (many event logs contain a small subset of frequently
occurring trace variants, next to many low-frequent variants—the “long tail”).
As such, we set up an experiment—using the same arti�cial event logs as were
utilized in Section 3.5—were we once again calculate negative event weights, this
time over varying sizes of log noisiness, denoted as a percentage of events which
were tampered with (swapped, removed, inserted). Once again, it is crucial to
emphasize that, to generate the arti�cial negative events, the input log in which
negative events are induced is kept constant over all runs, corresponding with
the logs listed in Table 3.1, whereas the log used to build the su�x tree is modi�ed
for each run and set equal to the di�erent noisy logs together with the original,
non-noisy log. Even more than the completeness robustness check performed in

118 3.6. DISCUSSED TOPICS

Subection 3.3.3, this is important, as we are only able to derive the “true status”
of the negative events (based on the associated Petri net) when the event log is
�tting, which cannot be guaranteed in the case of noisy logs. The reason why
the non-noisy log is included is because we are interested in how the weightings
of negative events change due to the e�ects of noisy data. If we would induce
negative events in the original logs based on the noisy logs only, many incorrect
negative events would receive a higher weighting as no matching windows of
su�cient length can be found in the noisy event log. Normally, negative events
are induced in a log based on an event log which is equally or more complete
than the original log, i.e. the log itself. Here, we are interested in the ceteris
paribus e�ects of noisy data, as the end goal of the experiment is to analyze how
the weightings evolve over these noise levels.

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 119

Event log a5. Event log a6nfc.

Event log betaSimpli�ed. Event log choice.

Figure 3.15: Evolution of arti�cial negative event weights in comparison with event log
noisiness. The gray lines denote weights after infrequent traces were removed in the event
log used to build the su�x tree.

120 3.6. DISCUSSED TOPICS

Event log driversLicenseLoop. Event log herbstFig3p4.

Event log l2lOptional.

Figure 3.15 (continued): Evolution of arti�cial negative event weights in comparison
with event log completeness.

The results of the experiment are presented in Figure 3.15. The following obser-
vations can be made. First, note that the weights of generated negative events
indeed drop as more noise is added, but the e�ects are relatively limited (negative
events never drop to a weight of zero, as this would only occur in very unlikely
circumstances), and reach a tipping point after a 50% noise level. This is to be
expected, as after this level the event log becomes so noise that the—now almost
random—traces become useless again towards disproving a candidate negative
event, thus causing the weights to rise again.

Next, note the addition of the gray lines in Figure 3.15. These represent vari-
ous threshold levels n, which is used to modify the event log used to build the
su�x tree (the original and noisy log, as we recall) so that infrequent traces are
removed. A trace is infrequent whenever its multiplicity m is m 6 n× |L| with

CHAPTER 3. WEIGHTED ARTIFICIAL N.E. CONFORMANCE CHECKING 121

|L| the size of the original log. This procedure is applied to the complete suf-
�x tree building log (original and noisy), however, as we again are interested in
seeing the e�ects of this �ltering step ceteris paribus. The results suggest that
0.03 can be put forward as a good threshold to prevent the dropping of negative
event weights under noise, but we also emphasize the fact that this threshold
is highly dependent on the variance structure of the event log. In some cases—
when choosing a threshold which is too high, especially—we also see that the
weights for incorrect negative events rise from zero to a higher number, which
is de�nitely an undesirable scenario. As such, we reiterate our previous state-
ment that we regard the aspect of noise in event logs as a separate topic, for
which specialized techniques should be applied. We have proven, however, that
for small amounts of noise, the weightings of the negative events remain stable
enough to be used as-is in subsequent steps (e.g. conformance checking). The
highest impact is observed in cases where an event log contains 50% noise or
more, in which case we recommend users to obtain a better suited (less noisy)
event log, as no single technique (conformance checking or process discovery)
will be able to derive useful results from such input set.

3.7 Conclusions

In this chapter, a novel conformance checking approach was put forward to de-
termine how well a process model performs in terms of precision and general-
ization. The validity of the approach was illustrated by evaluating the proposed
arti�cial negative event weighting method and by performing an experimental
setup to benchmark our metrics in comparison with related techniques.

Our approach o�ers the following contributions. First, we have outlined an
improved strategy for arti�cial negative event induction, extending it with a
weighting method in order to indicate the con�dence given to a candidate neg-
ative event, which helps to deal with incomplete logs, and implementing it in a
manner which greatly improves the scalability of the technique. Second, these
weighted arti�cial negative events form the basis of two novel metrics for pre-
cision and generalization. The introduction of a new generalization metric is an
important contribution, due to the fact that the metric does not rely on a prob-
abilistic estimator. Third, it was illustrated how these metrics can be applied on
Petri net models and we have implemented both a heuristic and log-model align-
ment based approach in order to perform trace replay. All described techniques

122 3.7. CONCLUSIONS

and metrics are made available in a number of ProM plugins, being the �rst im-
plementation to provide a full conformance checking framework using negative
events.

In closing, an opportunity for future work is put forward: although the Weighted
Behavioral Generalization (gwB) metric provides a solid �rst step towards deter-
mining a process model’s ability to generalize, it was found that the metric per-
forms a rather strict evaluation. This is mainly due to the fact that, currently, the
usefulness of a negative event towards generalization is direct inversely related
to its use towards precision. Thus, the same weighted negative event can be used
towards assessing both precision and generalization. It would be reasonable to
constrain this behavior in future additions.

123

Chapter 4

Arti�cial Negative Events as Unobserved
Events

“Three things cannot be long hidden:
the sun, the moon, and the truth.”

– Buddha

4.1 Introduction

In the previous chapters, we have outlined the concept of arti�cial negative
events, together with various strategies to generate them based on a provided
event log containing positive behavior only. Based on this, a novel conformance
checking approach was put forward to determine how well a process model per-
forms in terms of precision and generalization.

This chapter looks at the concept of arti�cial negative events from a slightly dif-
ferent viewpoint. That is, readers might notice that the concept of an arti�cial
negative event di�ers from a natural negative event in the sense that a natural
negative event was a recorded attempt to execute a certain activity which was
prohibited (i.e. attempted in real-life), whereas a collection of arti�cial negative
events represent behavior which was unobserved—based on a con�gurable com-
pleteness assumption which has been shown to be robust—which is subsequently
being “accepted” as being undesirable behavior for a process model to exhibit.

124 4.2. UNCOVERING IMPLEMENTATION GAPS

However, when looking at a set of arti�cial negative events as being represen-
tations of unobserved behavior, other analysis possibilities can be put forward,
which will be elaborated brie�y in this chapter. The basic idea can be summa-
rized as follows: by applying our implemented arti�cial negative event genera-
tion strategies, arti�cially inducing events based on process history provides a
�tting tool in order to detect which events were never observed at certain times
in certain process instances. By examining these “under-represented” events and
matching them with the set of current business rules and designed process mod-
els, investigators and analysts can spot non-occurred events which were, how-
ever, allowed and perhaps even desired. Such cases provide a good indication
to investigate further in order to uncover the root causes behind this missing
behavior, especially if the absence of a certain set or sequence of events is over-
shadowed by the presence of another set (meaning that, for some reason, certain
perfectly valid alternatives are more or less ignored during day-to-day business
conduct in favor of other activity paths). Applying the induction technique as
described above thus allows us to uncover and analyze another group of events
in our classi�cation framework, namely those that did not occur in real-life (rep-
resenting rare or infrequent tasks): the unobserved events.

4.2 Uncovering Implementation Gaps

We de�ne unobserved events as business events for which the business process
analyst cannot �nd evidence of their existence and that are not recorded in the
provided event log. Two main subcategories can be distinguished: unobserved
events for which the occurrence is expected in normal mode of operation and
therefore might imply a dangerous deviation, and unobserved events for which
an occurrence was not expected, i.e. the normal case. The latter are mainly used
for learning business rules from the behavior present in an event log, as will be
illustrated in the next section.

For unobserved events which were nevertheless allowed according to normal
business conduct or even expected in normal business operations, it can be ob-
served that they re�ect anomalies in the process model, alerting the business.
The business may consider to provide training, impose new rules, or adjust the
designed model to reality because of its obsolescence. Note that arti�cial nega-
tive event generation is not the only way to retrieve these cases, as they can also
be retrieved by means of LTL property veri�cation [128–131], although the latter
requires the presence of some user or domain knowledge.

CHAPTER 4. ARTIFICIAL NEGATIVE EVENTS AS UNOBSERVED EVENTS 125

Consider for instance the following illustrative example. Suppose that the deci-
sion is made to record the execution of a “Discuss with client” activity by asking
employees to register this activity in the supporting information system. This
activity is modeled in some prescriptive process model, where it follows after
an “Ask approval” activity and can be executed with a “Sign credit request” ac-
tivity. After the IT department has been instructed to implement the change,
the concept of unobserved events can be utilized to verify whether this check
has been implemented correctly. First, a process model is extracted from the
recorded event log, by using one of the many available process discovery tech-
niques. Next, we induce arti�cial negative events to uncover all behavior that did
not occur in reality in the event log, given a certain process instance history—
note that the con�guration parameters then serve as a control for strictness; in
most cases, a window of size one can be already helpful to uncover missing but
perhaps expected behavior. Next, all negative events for which is it known that
their actual execution would violate a business rule are removed, as this can be
considered to be correct unobserved behavior1. The remaining set of negative
events then represents allowed unobserved behavior.

By annotating the discovered process map with this information, we can imme-
diately inspect which activity �ows are allowed in the process model but did not
occur in the event log, see e.g. Figure 4.1. Analysts can then perform further
investigations to uncover the root causes behind this fact. For our example, the
parallel split between “Discuss with client” and “Sign credit request” was imple-
mented incorrectly (modeled instead as a sequence in the information system),
which is immediately highlighted when zooming in on the set of allowed unob-
served events. Actions can be undertaken to investigate the causes of the absence
of the events and measures may be applied to prevent this in the future.

4.3 Enhancing Declarative Process Models

4.3.1 Introduction

Let us now focus our attention towards deriving a generalized approach to utilize
unobserved events, namely in the context of the validation and enhancement of

1Note however that this set of unobserved behavior can also be helpful, i.e. to measure pre-set
key performance indicators, as these unobserved events can be used to indicate that a preferred path
is always followed, thus evidencing normal process execution.

126 4.3. ENHANCING DECLARATIVE PROCESS MODELS

Ask approval

Discuss with
client

+

Sign credit
request

+

Prescribed model, allowing parallelism between “Discuss with client” and “Sign credit
request”.

Ask approval Discuss with
clientSign credit

request

Discovered model only allows one execution order. Unobserved activity �ow can be
annotated to spot implementation issues.

Figure 4.1: Unobserved events can help to highlight permitted and expected paths in the
process map which were not followed in real-life, highlighting implementation issues and
other discrepancies.

CHAPTER 4. ARTIFICIAL NEGATIVE EVENTS AS UNOBSERVED EVENTS 127

process models. Generally speaking, we are interested to extract two types of
behavior:

1. Real-life behavior which is rejected by the process model: model correct-
ness perspective.
By validating the current process model on historic process instances, devi-
ating cases containing behavior that is explicitly disallowed by the model
are detected, so that problematic or suspicious process instances can be
identi�ed and audited if necessary. However, it is possible that not all de-
viating instances should per de�nition be rejected, as it might be the case
that some deviations are presenting allowed behavior after all, giving rise
to process model enhancements in the form of the removal of restrictions
or addition of relaxations. That is, instead of rejecting some deviating pro-
cess cases which do not conform to a given model, it is also possible to
modify the model to better represent the current real-life behavior. This
type of behavior is thus applied to assess whether the given model is cor-
rect in accordance with observed, real-life data. Note that this perspective
is related to the �tness quality dimension.

2. Allowed behavior which is absent in real-life instances: model complete-
ness perspective.
Additional to investigating if the given process model supports the execu-
tion of process instances as they occurred in real-life, one can also check
whether all allowed behavior by a process model can also be found in an
event log, or, put di�erently, if the process instances as they happen in
real-life never exhibit certain behavior, although this behavior is never-
theless allowed by a given process model. This type of behavior is thus
utilized to determine whether the given model is complete in accordance
with observed, real-life data. Note that is di�erent from the concept of log
completeness as we have mentioned before, as the topic of interest here
is the process model. Note that this perspective is related to the precision
quality dimension.

Figure 4.2 provides a schematic overview of these types of behavior.

We will focus our attention on the aspect of enhancing process models, as the
aspect of validation can be dealt with by using standard �tness-based metrics,
as seen in Chapter 3. Furthermore, we will focus process models expressed in
a declarative manner, as we have also seen how to deal with the problem of
unobserved behavior for procedural models before. That is, by:

128 4.3. ENHANCING DECLARATIVE PROCESS MODELS

Behavior Seen in
Event Log

Behavior
Permitted By
Model

Area a: Allowed Superfluous Behavior: Completeness Issue
Area b: Normal, Allowed Behavior
Area c: Rejected Real-life Behavior: Correctness Issue
Area d: Rejected, Non-occurring Behavior

a b c d

Figure 4.2: Schematic overview of behavior found when comparing a process model with
real-life event log data. Permitted behavior is constrained by a process model, which
is then compared with the behavior seen in the event log. Area “a” corresponds with
behavior allowed by the process model but not evidenced by real-life data—indicating a
completeness issue, whereas area “c” indicates real-life behavior which was rejected by the
process model—indicating correctness issues. Area “b” corresponds with normal, allowed
and seen behavior. Area “d” corresponds with rejected behavior, but which was also not
observed in the event log.

CHAPTER 4. ARTIFICIAL NEGATIVE EVENTS AS UNOBSERVED EVENTS 129

1. Finding unobserved events in the form of arti�cial negative events repre-
senting behavior which never occurred but was nevertheless allowed by
the process model, i.e. the false positive events. These cases help to un-
cover expected but non-occurring behavior.

2. Discovering a process model and annotating it based on unobserved events,
as illustrated in the previous section. This cases help to uncover potential
implementation problems.

Looking at declarative models is also interesting due to a reason following from
a real-life aspect which comes into play when business processes are de�ned and
developed in organizations. Oftentimes, two roles are involved in the manage-
ment of organizational processes: domain experts, meaning business analysts or
managers, and IT experts, who have the responsibility of translating business
requirements to an e�ective implementation [120]. Two di�erent perspectives
can be identi�ed between these complementary roles: while the IT expert often
follows a procedural modeling style in order to better deal with implementation
and execution aspects, the business analyst commonly applies a more declarative
approach, describing business processes as a set of policies, rules and guidelines
which guide the overall activity �ow. When performing business process val-
idation and enhancement tasks, the ability to correspond retrieved �ndings to
decision-makers in a clear and comprehensible manner (e.g. in the form of a
new rule), rather than a formal revision of an implemented procedural model is
a signi�cant advantage. As such, we will deal with these concerns by retrieving
behavior which is allowed by the set of given rules but not found in a given event
log, found by matching rule-generated forbidden activity executions with absent
behavior in the event log.

4.3.2 Discovering Super�uous Modeled Behavior

Checking the correctness perspective on declarative models (i.e. the �tness) is well
described in literature, i.e. in the form of rule based property veri�cation [128].
The enhancement of declarative process models as we described above, however,
has received less attention. Two reasons can be stated to provide an explanation.
First, it follows from the nature of declarative models that over-speci�cation is of-
ten (and willingly so) avoided, allowing to defer the exact control-�ow sequence
of activities until run-time. Second, computing all possible allowed paths from
a given process model (either procedural or declarative) becomes increasingly

130 4.3. ENHANCING DECLARATIVE PROCESS MODELS

more di�cult when the size or complexity of the described process increases.
Although we agree with the sentiment that the ability to generalize is one of
the key bene�ts of declarative (process) models compared to procedural repre-
sentations, we argue that investigating allowed behavior which never occurs in
real-life is nevertheless valuable, for example to discover business rules which
were never explicitly formulated, to discover behavior which is allowed by busi-
ness and domain experts but which was not permitted in the running information
system due to implementation distortions, or simply to gain insight in real-life
processes. To deal with the second remark (computational di�culty), we ap-
ply the arti�cial negative event induction method as described above in order
to introduce negative examples in historic process instances (non-occurring be-
havior), which are then compared with the set of negative events generated from
the current rule base (model-rejected behavior). We then apply a rule induction
technique in order to derive new candidate-rules.

The intricacies of this step are as follows. First, since we are interested in con-
straining rules which restrict the possible �ow between activities, we arti�cially
induce negative events in historic process instances to capture which behavior
did not occur during the actual, real-life execution of the process at hand (non-
occurring, log-rejected behavior), as was described in Chapter 3. Next, a second
set of negative events is generated from the rule base (representing the disal-
lowed, model-rejected behavior). To do so, we iterate over all events of all given
traces and check which activity types other than the actually completed event
could have occurred as well. Algorithm 4.1 describes this generation process.
Note that we have already described a similar generation process to extract disal-
lowed, model-rejected behavior when we induced arti�cial negative events from
a given procedural model, see Algorithm 3.2—the basic idea here is the same,
with the exception that no replay is performed on a Petri net to see whether a
“negative trace” is truly disallowed or not, but instead the candidate negative
event is compared with the rule base.

Once the two sets (log-rejected and model-rejected) of negative events are con-
structed, a comparison operation is performed in order to �nd those negative
events which are not yet imposed by one or multiple rules (unconstrained, non-
occurring behavior)2.

2The actual comparison itself is exact and trivial, since the sets of negative events are inserted at
the same positions in the same traces, so that comparison can be performed by iterating over each
position in each event log trace, i.e. NE(σi) \NED(σi).

CHAPTER 4. ARTIFICIAL NEGATIVE EVENTS AS UNOBSERVED EVENTS 131

Algorithm 4.1 Rule-based generation of negative events.
Input: An event log L
Input: R % Given declarative process model (rule base)
Output: A setN of induced arti�cial negative events

1: function NED(σi) % Induce set of negative events from declarative model
2: N := ∅
3: for all a ∈AL \ {σi} do
4: s := 0 % Score for this negative event
5: τ := 〈σ1 , . . . ,σi−1 ,a〉
6: for all r ∈ R do
7: if r(〈σ1 , . . . ,σi〉)∧¬r(〈σ1 , . . . ,σi−1 ,a〉) then
8: % r holds in partial original trace but not in the partial candidate negative trace
9: s := 1 % Rule base rejects behavior, candidate negative event is a true one

10: end if
11: end for
12: % Negative event with activity a and weight s
13: N :=N∪ {(σ, i,a,s)}
14: end for
15: returnN
16: end function

4.3.3 Extending the Declarative Model

Once a set of unobserved events representing super�uous behavior has been
established, these events can then be analyzed in order to derive new domain
knowledge. Note once more that these events describe behavior which did not
occur in real-life, although the rule base does not explicitly prohibit this behavior
from happening. Inspecting such cases can lead to new rules which extend the
current model in order to improve its completeness, or can light up implemen-
tation distortions (something was permitted to occur by business conduct but
prohibited by the implemented system).

It is not always straightforward to propose or design new rules based only on
absent behavior present in an event log. However, it is possible to apply the
given positive and constructed negative events towards a rule induction tech-
nique in order to automate the process extension task as follows. Based on
the event log supplemented with unobserved events, a data set is constructed
containing a binary target variable denoting if a particular activity of interest
a ∈ AL occurred (positive example) or was not observed (negative example).
Next, for each σi ∈ {σi ∈ σ|σ ∈ L ∧ σi = a} (positive event) and for each
σ−i ∈ {σ−i ∈ NE(σi) \NED(σi)|σi ∈ σ,σ ∈ L∧ σ−i = a} (unobserved event),
its history θ = 〈σ1, . . . ,σi−1〉 is examined and an instance is added to the data
set. Each such instance contains an attribute atta per activity type a ∈ AL, de-
noting whether this activity was absent (a 6∈ θ, attribute value equals “absent”),
present (a ∈ θ, attribute value equals “present”), or present at the �nal position
in history θ (a = θ|θ|, attribute value equals “directly precedes”). Note that other

132 4.3. ENHANCING DECLARATIVE PROCESS MODELS

input attributes can potentially be supplemented as well (e.g. to take into ac-
count case-related attributes), but for simple control-�ow based rule discovery
as described here, the set of properties as described above su�ces. Once the data
set is constructed, well-known rule induction techniques such as RIPPER [132]
can be applied in order to derive a new rule. Maruster et al. [63] also derive
control-�ow based rules from a given process log using a similar rule induction
methodology in order to discover a process model from a given event log. Con-
trary to our approach, however, the authors do not take into account natural
or arti�cial negative examples, so that the detection of non-occurring behavior
becomes more troublesome. Furthermore, enhancing given declarative process
models poses di�culties as well, since no comparison operation between model-
rejected behavior and non-occurring behavior can be performed. Note that we
target a perfect accuracy for the derivation of new rules. If misclassi�cations
do occur, the data set can be supplemented with additional attributes which are
able to perfectly distinguish between negative and positive examples in order to
support the addition of a new rule to the process model. Finally, remark that we
are mainly interested in deriving rules describing the occurrence of a negative
event (i.e. the rejection of the execution of an activity), as the declarative model
is formulated such that, by default (i.e. an empty model), all activity types are
always allowed.

4.3.4 Example Case

An example is provided to illustrate the proposed approach, in the form of an
insurance claim handling process. Based on the Petri net model shown in Fig-
ure 4.3, which was derived, an event log was generated containing twenty simu-
lated process instances and 92 total events, denoting that a certain activity com-
pleted at a speci�c point in time within a process instance. Remark that the Petri
net depicted in Figure 4.3 will not be considered further throughout the remain-
der of the example. The Petri net given below should thus only be used as a
guidance in order to understand the possible �ow of traces included in the sim-
ulated event log. The actual process model is speci�ed in a declarative manner,
and reads as follows:

Rule 1. Claim evaluation (evaluateClaim) must be performed at least once.

Rule 2. Approval for pay of damages (approvePayDamages) and the calcula-
tion of new premium (calculateNewPremium) are executed in parallel.

CHAPTER 4. ARTIFICIAL NEGATIVE EVENTS AS UNOBSERVED EVENTS 133

Rule 3. Claim evaluation (evaluateClaim) must precede a proposal for settle-
ment (proposeSettlement).

Rule 4. Approval for pay of damages (approvePayDamages) must be preceded
by claim evaluation (evaluateClaim).

Rule 5. Closing (closeClaim) and rejecting (rejectClaim) a claim are mutually
exclusive.

We can also convert the rule base from a natural language representation to a
more formal representation. Declare [133–136], SCIFF [119, 137], Linear Tempo-
ral Logic [138] and CONDEC [139] can all be applied towards this purpose. We
will make use of Linear Temporal Logic (LTL) to represent the given constraints.
LTL has a number of interesting advantages, the �rst being that it allows for an
unambiguous interpretation of business rules. Secondly, many LTL “patterns”
already exist in literature which are able to capture the multitude of given rules.
For a detailed description of LTL semantics, we refer to [138]. The rule base is
thus now represented as follows:

Rule 1. �(evaluateClaim)

Rule 2. �(approvePayDamages) ⇐⇒ �(calculateNewPremium)

Rule 3. (evaluateClaim)W(¬(proposeSettlement))

Rule 4. (evaluateClaim)W(¬(approvePayDamages))

Rule 5. ¬(�(closeClaim)∧ �(rejectClaim))

Next, we discover super�uous allowed behavior by executing the steps as de-
scribed above. First, we generate arti�cial negative events using the technique
described in Chapter 3 to retrieve log-rejected behavior. As an example, consider
an event execution trace from the example as given in Figure 4.3. After using the
arti�cial negative event induction procedure, sets of negative events are inserted
before the occurrence of each normal—positive—event, shown in Table 4.1 below
each positive event for a single example trace. For example, after performing the
activities of claimIntake and reviewPolicy, the real-data as it happened and was
recorded in the event log rejects the occurrence of claimIntake (third column, i.e.
before the occurrence of evaluateClaim in this trace). It is important to remark
once more that the negative events are generated based on the behavior seen in
real-life, i.e. as recorded in a running system.

134 4.3. ENHANCING DECLARATIVE PROCESS MODELS

claimIntake

reviewPolicy

evaluateClaim

proposeSettlement

rejectClaim

approvePayDamages calculateNewPremium

closeClaim

Figure 4.3: Insurance claim handling process model used to generate example event log.

CHAPTER 4. ARTIFICIAL NEGATIVE EVENTS AS UNOBSERVED EVENTS 135

Table 4.1: An insurance claim handling process instance from the example supplemented
with arti�cially generated negative events.

σi ∈ σ claimIntake reviewPolicy evaluateClaim ... closeClaim
NE(σi) reviewPolicy claimIntake claimIntake

...

claimIntake
evaluateClaim proposeSettlement reviewPolicy reviewPolicy

proposeSettlement approvePayDamages proposeSettlement evaluateClaim
approvePayDamages calculateNewPremium approvePayDamages proposeSettlement

calculateNewPremium closeClaim calculateNewPremium approvePayDamages
closeClaim rejectClaim closeClaim calculateNewPremium
rejectClaim rejectClaim rejectClaim

Next, we compare this set of negative examples with the set of negative events
as imposed by the current rule base (model-rejected behavior, Algorithm 4.1) to
�nd a valid set of unobserved events. In our insurance claim handling exam-
ple, the current rule base leads to the induction of 102 model-rejected negative
events, denoting that a certain activity could not occur. For example, Rule 3,
“Claim evaluation (evaluateClaim) must precede a proposal for settlement (pro-
poseSettlement)”, introduces negative events with activity type proposeSettlement
at every position of each trace as long as evaluateClaim was not completed at a
previous position. These negative events are then removed from the log-rejected
593 negative events which were generated based on historic, logged information
to derive unconstrained, non-occurring behavior.

Following this, the remaining set of negative events can then be analyzed in
order to derive new domain knowledge. For instance, after inspecting the set of
negative events which were not captured by one or multiple rules, it is found that
the activity reviewPolicy is frequently rejected from completing based on actual
logged behavior, although no single rule in the current process model constrains
this activity in any way. Therefore, we are interested in deriving a new rule
which does describe when a policy may be reviewed to cover this unobserved
behavior.

Based on the steps above, the following rule for the reviewPolicy activity type is
derived after applying RIPPER (depicted in conjunctive normal form):

Rule 6. IF (NOT claimIntake = “directly precedes”)
THEN reviewPolicy = 0

Or, stated otherwise: the reviewPolicy activity is rejected from being executed
(value 0 corresponds with a negative event) if it is not directly preceded by a
claimIntake activity. Domain experts can then decide if the rule “Reviewing in-
surance policy is optional but may only occur right after a new claim intake”

136 4.3. ENHANCING DECLARATIVE PROCESS MODELS

should be added to the process model. The corresponding LTL representation
for this rule would then read as:

Rule 6. �(©(reviewPolicy) =⇒ claimIntake)∨�(¬(reviewPolicy))

Similarly, the rejectClaim activity type is also never executed at certain positions,
even after taking the constraints imposed by the current rule base into account,
so that the process model (Rule 5 in particular) can be made more strict. The
following rules are derived and replace Rule 5:

Rule 5a. IF (evaluateClaim = “absent”)
THEN rejectClaim = 0

Rule 5b. IF (proposeSettlement = “present”)
THEN rejectClaim = 0

Our technique also deals with parallelism (AND-splits) in a correct manner. For
example, the following rules are derived for approvePayDamages:

Rule 8a. IF (NOT proposeSettlement = “directly precedes”)
AND (NOT calculateNewPremium = “directly precedes”)
THEN approvePayDamages = 0

Rule 8b. IF (NOT proposeSettlement = “directly precedes”)
AND (approvePayDamages = “present”)
THEN approvePayDamages = 0

By following the technique as described above, the completeness of declara-
tive process models can be improved in an automated manner by deriving new
business rules based on the actual behavior of process instances. Note that this
metholodogy can be extended so that declarative models can also be enhanced on
the basis of information other than control-�ow constructs (i.e. “presence”, “ab-
sence” and “precedence” information in the event history of process instances),
so that the full �exibility of declarative process models can be leveraged. For ex-
ample, by taking organizational and case data into account, more granular and
re�ned business rules can be derived, revealing knowledge about the way people
work together or how processes develop according to their speci�cs.

CHAPTER 4. ARTIFICIAL NEGATIVE EVENTS AS UNOBSERVED EVENTS 137

4.4 Towards an Event Existence Classi�cation Frame-
work

We close this chapter—and this part—with some thoughts on the development
of a complete event existence classi�cation framework. With all the discus-
sion around positive events, negative events, arti�cial negative events and un-
observed events given so far, we wish to emphasize that common process man-
agement and analytics techniques usually deal with one speci�c type (or kind)
of business events only: these which are recorded in the event log (or database)
under consideration and which (or so they should, that is) correspond to some
real-life activity—i.e. the pure, positive events. That is, many techniques assume
that the provided event logs contain complete (i.e. all possible) and accurate (i.e.
compliant and absent of noise) information on the process. While the presence
of a systematic, reliable and trustworthy recording of the events is essential for
the theoretical development process discovery and reconstruction, in practice,
inaccurate forms of event log data may be present (or desired information may
be absent). The assumptions described thus lead to important implications for
business applications. Firstly, the completeness assumption for the event log im-
plies that process analyses might be conducted on a subset of the allowed process
behavior [140]. Manual operations activities that are not supported by informa-
tion systems might be hard to record. Consequently, the absence of a certain type
of activity in the event log might not correspond with the reality. Additionally,
the event log may not cover all allowable transition paths, as these transitions
did not occur within the event log’s timeframe. These are important implica-
tions when reviewing or reengineering a business process based on retrieved
process models. Secondly, not all events present in the event log might be an
honest representation of the activities performed. For example, manual activi-
ties could be performed and recorded in a di�erent sequence or might not have
happened at all. Performing a process audit based on this information may re-
sult in distorted conclusions and recommendations, e.g. a missing event might
indicate fraud or be the direct result of ine�ectiveness in the event recording.
The research towards the de�ning and categorization of events has not yet been
related to these general data quality aspects. Ontology-oriented contributions
like DOLCE [141] and UFO [142–144] distinguish between atomic events (i.e.
achievements) and complex events (i.e. accomplishments). REA [145] represents
two kinds of events: economic events that represent changes in scarce means
and business events that correspond to activities that the management wants
to plan, monitor and evaluate. Multiple process modeling approaches incorpo-

138 4.4. EVENT EXISTENCE CLASSIFICATION FRAMEWORK

rate events as something of importance that happen in a process model, see e.g.
EPC (Event-driven Process Chain) [146]. They usually distinguish at least events
preceding an activity (i.e. precondition events) and events succeeding an activity
(i.e. post condition events). Many authors also propose ontologies and de�nitions
around the notion of events in the context of the �eld of complex event process-
ing [147–151]. However, our work cannot be directly related to this domain, as
we approach the concept of an “event” from a di�erent semantic perspective,
namely its meaning and its types within a business processes analytics and pro-
cess mining environment, that is, events as they occur in information system
logs. More closely related to our context are thus the contributions in the con-
text of data quality, with dimensions such as data accuracy, data completeness
and data security [152].

In short, based on all the techniques outlined in this part of the dissertation, we
see that a more complete framework is needed in order to distinguish between all
the various sorts of business events that are important in the context of business
process analytics. As such, we argue for the construction of a comprehensive
business event analysis classi�cation framework, with the following goals and
objectives:

1. Raise awareness about the various types of events that can exist in a busi-
ness context, starting from the premise that the assumption that reality
implies registration within this context regarding business events is an in-
complete one.

2. Providing a clear and unambiguous naming scheme when talking about
“events”.

3. Enabling a better orientation of these research areas and enables to indicate
potential issues in the research �elds.

Previous research in event-based information systems and process analysis has
mainly focused on the behavior described by the registered events. Process anal-
ysis contributions have not only uncovered potentially harmful deviation be-
tween the designed process and the real process behavior, but also between the
real process behavior and the event log (considering for example the notion of
“invisible tasks,” which are not logged in audit trails but impact the way workers
“move” through processes). Based on previous works and the techniques pre-
sented thus for, we are able to propose �ve boolean criteria to be considered in
an event analysis classi�cation framework:

CHAPTER 4. ARTIFICIAL NEGATIVE EVENTS AS UNOBSERVED EVENTS 139

1. Occurrence in real-life. A real business event is an occurrence that hap-
pened in the organization’s business environment and that is deemed rele-
vant for the organization. The opposite is: something that did not happen.

2. Recorded event (in the event log). A recorded event is an occurrence that
was registered by an information system of the organization in the event
log under analysis, irrespective of the fact that it is an actual business
event or not. Process analytics researchers and management scientists of-
ten assume the completeness of the event log. Concretely, this means that
an assumption is made that all possible behavior is present in the event
log and that the execution of all events (and activities) will be recorded
in a precise and exact manner. In real world projects, these assumptions
are easily challenged. For example, a manual task or a phone call will
not necessarily be registered, or rare behavior will not be observed in the
historic data repository under consideration, thus perhaps leading to ana-
lysts deriving that such behavior should occur (closed world assumption).
Additionally, the event log may also re�ect process behavior that deviates
from reality, e.g. registration of non-executed activities or event records
containing incorrect data due to anti-dating or employees using the au-
thentication combination of other employees. Whether actual business
events are registered may indicate whether an event log complies with
reality. Secondly, while process-aware information systems may not be
able to register every event relevant to the process under review, it might
nevertheless be possible to �nd evidence in other sources, such as event
logs of related process, mail history, RFID registration systems, etc.

The combinations of these two criteria leads to four primary event type
“categories”, see Table 4.2.

3. Recorded event (in alternative source). A recorded event extracted from
an alternative source is an occurrence that was registered by a system in a
di�erent data source, potentially but not exclusively another event log.

4. Compliant event. The classi�cation should take into account whether
an event corresponds to the allowed or permitted mode of operation or
whether it is deviating from this mode. An event is compliant with the
business rules if—given the existing process history—the occurrence of the
event does not violate any business rule.

5. Expected event. An event is expected when its presence is foreseen and
anticipated during normal business operation, whereas its absence might

140 4.4. EVENT EXISTENCE CLASSIFICATION FRAMEWORK

Table 4.2: The combination of the “actual business event” and “recorded event” criteria
leads to the derivation of four primary event type categories.

Occurred in
real-life?

Recorded in event
log?

Event Category

Yes Yes Truthful Event
No Invisible Event

No Yes False Event
No Unobserved Event

result in a costly, deviating or special handling of the process instance.

Based on the previously presented classi�cation criteria we are able to discern
di�erent event types, some of which have not yet been recognized in the process
analysis literature. We will not discuss all of these in depth in this work, but
instead refer to literature where a detailed description of the proposed frame-
work can be found [153]. Note however the positioning of positive, negative and
unobserved events in this framework:

Positive events as discussed so far corresponds to truthful events in Ta-
ble 4.2. That is, events which occurred in real-life and were recorded in
the event log. Checking these events on a process model then can estab-
lish whether they were compliant or not.

Natural negative events can now correspond to multiple categories in the
proposed framework. When the activity was actually executed in real-
life, it is either recorded (truthful event) or not (invisible event), but non-
compliant according to the prescriptive model. When the activity was not
executed, it is still possible to log a truthful “warning” event, in line with
compliance measure, as the actual negative behavior was successfully pre-
vented.

Arti�cial negative events now corresponds to unobserved events in the
proposed framework. They have been utilized as such in this chapter.

This chapter concludes the �rst part of the dissertation and our discussion on
arti�cial negative events. Next part will discuss a number of assorted topics and
contributions not directly related to the concept of negative events.

141

Part II

Other Advances in Process Mining

143

Chapter 5

Fodina: Robust and Flexible Heuristic Process
Discovery

“The battle�eld is a scene of constant chaos.
The winner will be the one who controls that chaos,

both his own and the enemies.”
– Napoleon Bonaparte

5.1 Introduction

In this chapter, we present Fodina, a process discovery technique with a strong fo-
cus on robustness and �exibility. The contribution of this work is not to propose
yet another process discovery tool, but rather to pragmatically improve upon a
class of existing process discovery algorithms, namely the so-called “heuristic”
miners [44], adding some particular interesting features to make the approach
more robust to noisy data, the ability to discover duplicate activities, and �ex-
ible con�guration options to drive the discovery according to end user input.
“Heuristics Miner” is one of the best known and most used process discovery
algorithms both by practitioners and researchers [154], and has also proven its
worth in benchmarking studies illustrating the technique’s ability to discover
high-quality models [47]. However, some problematic issues can be identi�ed
which negatively impact the reliability of the technique. As such, we have set
out to perform a thorough review of the existing Heuristics Miner and all its

144 5.2. PRELIMINARIES

variants to identify a list of issues. Then, based on a literature study regarding
dependency-based heuristic process discovery techniques, we consequently pro-
pose a new implementation of a heuristic process miner which is proven to be
more robust via a series of empirical experiments.

5.2 Preliminaries

5.2.1 Literature Overview

In the area of process discovery, the α-algorithm can be regarded as one of the
most fundamental and substantial techniques (see also the introductory chapter).
Van der Aalst et al. [55] prove that the technique is able to learn an important
class of work�ow nets (structured work�ow nets) from event logs, provided that
the given event log is su�ciently complete (meaning in this case that each binary
sequence between two activities which can occur is also present in the event log)
and that the event log does not contain any noise. Therefore, although the α-
algorithm is a formal and elegant approach towards constructing process models
from activity sequences, the technique is sensitive to noise and incompleteness
of event logs. Furthermore, the original version of the technique is unable to
discover short loops or non-local, non-free choice constructs. Other scholars
have improved the α-algorithm to mine short loops [58] and detect non-free
choice constructs [68] (denoted as “α++”).

In order to deal with the problem of noise and to remedy the robustness prob-
lem of the α-algorithm class of techniques, Weijters et al. developed Heuris-
tics Miner [44] (the approach was initially developed under the name “Little
Thumb” [57], one year after the α-algorithm). This technique extends the α-
algorithm in that it applies frequency information with regard to relationships
between activities in an event log. Heuristics Miner can also discover short loops
and non-local dependencies. Invisible activities are not mined directly as such,
but the mined “Heuristics net” does not speci�cally require the presence of invis-
ible activities to model activity skips or complex routing constructs (after conver-
sion to a Petri net, the model will then contain the invisible activities necessary
to represent these constructs). Duplicate activities are also not mined. Note that
other process discovery techniques also make use of Heuristics nets to represent
mined process models, most notably Genetic Miner [65, 66, 155, 156], although
this technique is not regarded as a typical heuristic process discovery algorithm

CHAPTER 5. FODINA 145

in the context of this chapter as it applies an evolutionary optimization strategy
to derive a �tting process model, rather than applying frequency-based depen-
dency measures.

Following closely after the inception of Heuristics Miner, Günther and van der
Aalst developed another heuristic process discovery technique, named Fuzzy
Miner [67], geared speci�cally towards mining unstructured, spaghetti like pro-
cesses. Like Heuristics Miner, this technique does not mine duplicate or invisible
activities. Additionally, users can apply a number of �lters to create higher-level
abstractions of complex process models, either by �ltering out activity nodes or
edges, or by clustering groups of activities in the Fuzzy model. A variant of Fuzzy
Miner is implemented in the proprietary tool Disco [90], released in 2012.

In 2010, Burattin and Sperduti proposed an adaptation of the Heuristics Miner
algorithm—Heuristics Miner++—which extends the former by considering activ-
ities with time intervals, i.e. having a starting and ending time instead of being
logged as an atomic, zero-duration event [84]. The authors modify Heuristics
Miner accordingly in order to better derive parallelism relations between activi-
ties based on this timing information (overlapping activities in time infer paral-
lelism). The same representational process model form as utilized by Heuristics
Miner is retained, i.e. Heuristics nets. No duplicate activities are mined. The
same authors have also proposed a modi�ed Heuristics Miner which is able to
deal with streaming event data [87], and an initial strategy towards automatically
optimizing the miner’s parameters has been proposed as well [85].

Finally, Weijters and Ribeiro have created a modi�ed version of their Heuristics
Miner algorithm, denoted as Flexible Heuristics Miner [86], which outputs the
mined model as a Causal net [4]. Although this representation is very similar
to Heuristics nets at �rst appearance, an important di�erence exists in the way
input and output bindings are expressed for each task (a binding is a set of sets
of tasks—detailed preliminaries and de�nitions are provided below). In Heuris-
tics nets, the subsets in a binding are in an AND relation, whereas the tasks
within these subsets are interpreted as being in a XOR relation. For Causal nets,
the semantics are reversed, so that the subsets of tasks in a binding are in an
XOR relation, whereas the tasks within each subset are in an AND relation. The
latter representation is more structured and easier to understand. The Flexible
Heuristics Miner also incorporates a new strategy to mine split/join semantics,
based on the frequencies each input and output binding is activated for each
task. Although Causal nets (or: “C-nets”) have gained traction in recent years
within the process mining community due to the fact that they provide a better

146 5.2. PRELIMINARIES

representational bias for process discovery compared with conventional, more
strict design oriented languages (such as Petri nets or BPMN) [43], the Flexible
Heuristics Miner currently remains the only process discovery technique capable
of directly mining such models.

Table 5.1 provides a concluding synopsis of the various heuristic process discov-
ery algorithms together with their various implementations. All of the heuristic
process discovery algorithms described above have been implemented in various
forms and stages, most commonly as a ProM plugin.

Since the implemented algorithms and techniques do not always correspond fully
with the speci�cations outlined in the literature, it is useful to provide a global
overview highlighting main versions with their properties; we only consider
ProM versions from 5.2 onwards. Some discovery algorithms are also imple-
mented in earlier version, but these are generally considered as being outdated
and are no longer available. The α-algorithm is available in both ProM 5.2 and
ProM 61. ProM 5.2 includes three variants of the α-algorithm: Alpha Miner,
Tsinghua Alpha Miner and Alpha Miner++ , whereas the latter only contains
the basic variant. Heuristics Miner was originally conceived as a stand-alone
implementation (“Little Thumb”) but was later implemented in ProM. ProM 5.2
contains con�guration options for various thresholds. A conversion plugin to
convert Heuristics net to a reduced Petri net is also available. The ProM 6 imple-
mentation drops con�guration options for the “positive observations”, “depen-
dency divisor”, and “AND split/join” thresholds. This implementation also o�ers
a conversion plugin to convert Heuristics net to Petri net, although the conver-
sion is performed in a faulty manner for some cases (see also identi�ed issues
in Section 5.3 below). Note that this implementation cannot be called directly
by end-users. The Flexible Heuristics Miner can be called from the plugin list
in ProM 6 (“Mine for a Heuristics Net using Heuristics Miner”), but note, how-
ever, that this implementation �rst executes the (non-�exible) Heuristics Miner
algorithm—cfr. above—and thus derives split/join semantics in this manner, i.e.
using the same threshold based approach as in the (non-�exible) Heuristics Miner
technique. The resulting Heuristics net is then “annotated” with frequencies cor-
responding to the number of times each input and output bindings (denoted as a
“pattern”) were activated for each task. In addition, ProM 6 also o�ers a “Mine for
a Causal Net using Heuristics Miner” plugin, which does apply Flexible Heuris-
tics Miner, and returns a Causal net instead of a Heuristics net. Contrary to the

1ProM 5.2 was the latest ProM release within the version 5 branch. At the time of writing, the
latest ProM 6 release is ProM 6.3, which will be referred to as “ProM 6” throughout this chapter.

CHAPTER 5. FODINA 147

Table 5.1: Overview of heuristic process discovery algorithms.

Year Name Author(s) Implemented In Details
2003 α-algorithm van der Aalst et

al. [55]
ProM 5.2, ProM 6
(latest: 6.3)

No frequency-based heuristics to detect noise,
included as inspiration behind Heuristics
Miner. Extended to mine short loops [58] and
to mine non-free choice constructs [68].

2003 Heuristics Miner
(originally: Little Thumb)

Weijters et
al. [44, 57]

Little Thumb
(stand-alone), ProM
5.2, ProM 6

Applies dependency measures on
frequency-based counts in order to derive a
Heuristics net robust to noise.

2007 Fuzzy Miner Günther and van der
Aalst [67]

ProM 5.2, ProM 6,
Disco

Geared towards discovering unstructured
processes using various dependency
measures, �lters and abstractions.

2010 Heuristics Miner++ Burattin and
Sperduti [84]

ProM 5.2 Modi�cation of Heuristics Miner which takes
into account activities’ time duration.

2010 Flexible Heuristics Miner Weijters and
Ribeiro [86]

ProM 6 Revised version of Heuristics Miner using
another representational language (Causal
nets) and a di�erent strategy to mine
split/join semantics.

2012 Stream-aware Heuristics
Miner

Burattin and
Sperduti [87]

ProM 6 Modi�cation of Heuristics Miner for
discovering models from event streams.

2014 Fodina vanden Broucke et
al.

ProM 6 Proposed technique: user con�gurable
(�exible), robust and able to discover
duplicate activities.

previous plugin, the new �exible method of discovering split/join semantics is
applied, both for the discovery and annotating the given Causal net with fre-
quency statistics. Concerning Heuristics Miner++, Burattin and Sperduti o�er
a ProM 5.2 plugin2 based on the Heuristics Miner implementation, taking into
account activity durations. The plugin expects that all activities contain “start”
and “complete” events. In case of zero duration, the behavior is equal to that of
Heuristics Miner. For the Stream-aware Heuristics Miner, ProM 6 plugin source
code can be obtained from the o�cial ProM Subversion repository3. This imple-
mentation utilizes the ProM 6 (non-�exible) Heuristics Miner implementation
in combination with pre-processed streaming log windows (sliding window or
periodic interval). The novelty of this discovery technique lies thus in the pre-
processing of the input o�ered to the miner, rather than the actual discovery
step (which remains unmodi�ed). The Fuzzy Miner, �nally, has its main imple-
mentation built in ProM 5.2, although a direct port of the plugin is also available
in ProM 6. A proprietary implementation is also available in the form of the
well-known Disco tool4, which does not, however, o�er activity clustering or a
detailed con�guration of heuristic metrics to mine the fuzzy model for the sake
of user-friendliness.

2See: http://www.processmining.it/sw/hmpp.
3See: https://svn.win.tue.nl/trac/prom/browser/Packages/Stream/.
4See: http://www.fluxicon.com/disco.

http://www.processmining.it/sw/hmpp
https://svn.win.tue.nl/trac/prom/browser/Packages/Stream/
http://www.fluxicon.com/disco

148 5.2. PRELIMINARIES

5.2.2 De�nitions

Throughout this chapter, we will apply the de�nitions of an event log, Causal
net and Petri net as provided in the preliminaries in the introductory chapter.

We (re)de�ne a mapping function µ between a Causal net and event log as fol-
lows.

De�nition 5.1. Task-activity mapping. Let µ : TC → AL be a function map-
ping transitions to a label contained in AL (the log alphabet of event log L). A
similar mapping was already de�ned in the introduction for Petri nets and is
overloaded here. Each label contained in AL can hence be associated with one
or more transitions. It follows that µ assigns a label to each task in a Causal net.
Tasks in a Causal net cannot be invisible, but multiple tasks can be mapped to
the same activity, i.e. duplicate tasks. 2

We describe in addition how a Causal net can be converted to a Work�ow net.

De�nition 5.2. Causal net to Work�ow net conversion. Let CN = (TC,
ts, te, I,O) represent a Causal net; let (TC,D) be the dependency graph de�ned
over CN with D = {(a,b)|a ∈ TC ∧ b ∈ TC ∧ (a ∈ �b ∨ b ∈ a�)}. N =

(P,T ,F,pi,po,M0,M) represents the corresponding Work�ow net so that:

– P = {pIa|a ∈ TC} ∪ {pOa |a ∈ TC} ∪ {pD
(a1 ,a2)

|(a1,a2) ∈ D}—input and output
places are created for each task in the Causal net. A place is created for each arc
in the dependency graph.

– T = {ta|a ∈ TC}∪TI∪TO with TI = {aIX|a ∈ TC∧X ∈ I(a)} and TO = {aOX |a ∈

TC∧X ∈O(a)}—a transition is created for each task, additionally, for each input
binding for each task, an unlabeled transition ∈ TI is created; similarly, for each
output binding, an unlabeled transition ∈ TO is created.

– F = {(pIa, ta)|a ∈ TC}∪{(ta,pOa)|a ∈ TC}∪{(aIX,p
I
a)|a

I
X ∈ T

I}∪{(pOa ,aOX)|aOX ∈

TO} ∪ {(pD
(a! ,a2)

,aIX)|a
I
X ∈ T

I ∧ a1 ∈ X} ∪ {(aOX ,pD
(a! ,a2)

)|aOX ∈ T
O ∧ a2 ∈ X}—

each labeled transition is connected to its created input and output place. The
input and output places are connected with the created unlabeled transitions
representing the input and output bindings. Finally, the unlabeled transitions
are connected with the places representing the arcs in the dependency graph.
After converting a Causal net to a Work�ow net, a number of redundant invisible
transitions may exist which can easily be removed in an after-step to simplify the
Work�ow net, preserving soundness of the Wor�ow net [38]. 2

CHAPTER 5. FODINA 149

Note that Work�ow nets are not as expressive as Causal nets. Therefore, the
constructed Work�ow net over-approximates the behavior of the original Causal
net, meaning that the Work�ow net may enable a �ring sequence of transitions
which does not correspond with a valid �ring sequence in the original Causal
net [43].

5.2.3 Heuristic Dependency Based Process Discovery

This section outlines the (core) workings of existing heuristic dependency-based
process discovery algorithms (such as Heuristics Miner [44] and Flexible Heuris-
tics Miner [86]). Put broadly, the steps of these discovery algorithms all follow
the same basic procedure:

1. Derive counts of “basic relations” between activities in the event log.

2. Construct a dependency graph using “dependency measures” or “causal
metrics”, describing the basic causal semantics between activities (follows
and precedes relations).

3. Mine the semantic information, i.e. the sets of input and output bindings
per activity (representing the XOR and AND splits and joins).

4. Mine long-distance dependencies (optional).

These steps are described in more detail below.

5.2.3.1 Step 1: Derive Basic Relation Counts

To perform the �rst step, a dependency/frequency table is constructed containing
the count of basic relations found in the given event log. Following information
can trivially be abstracted from the event log (assumea andb are activities∈AL):

|a|—the number of times activity a appears in the event log (the frequency
of a), i.e. the number of times an activity σi occurred in the event log so
that σi = a.

150 5.2. PRELIMINARIES

|a > b|—the direct succession count between a and b (the number of times
that a is directly followed by b), i.e. the number of times an activity σi
occurred in the event log so that σi = a∧σi+1 = b.

|a >> b|—the repetition count between a and b (the number of times that
a is directly followed by b and b again followed by a), i.e. the number
of times an activity σi occurred in the event log so that σi = a∧ σi+1 =

b∧σi+2 = a.

|a >>> b|—the indirect succession count between a and b (the number
of times that a is followed by b, but before the next appearance of a or
b), i.e. the number of times an activity σi occurred in the event log so that
σi = a∧∃j > i : (σj = b∧@j > k > i : (σk = a∨σk = b)). Note that every
direct succession is also counted towards the indirect succession count.

5.2.3.2 Step 2: Construct Dependency Graph

Next, a dependency graph is constructed using dependency measures. Various
such dependency measures have been proposed in the literature to determine the
amount of “causality” between two activities. Based on user-de�ned thresholds,
a dependency is added in the dependency graph between two activities when
a dependency measure exceeds this threshold. Note that, in case of a perfect
situation where the event log is completely free of noise, every basic relation
occurring in the event log would be informative. The α-algorithm does just that,
i.e. when |a > b| > 0 ∧ |b > a| = 0 there is dependency between a and b;
when |a > b| = 0 ∧ |b > a| = 0, there is no dependency (exclusive choice) and
when |a > b| > 0 ∧ |b > a| > 0, a and b occur in parallel. For noisy logs,
however, more reliable measures are needed. Various such measures have been
proposed in the literature, either in the context of a heuristic dependency-based
process discovery algorithm, or in related work where the concept of activity
dependencies is also utilized, e.g. in [63], where such metrics are used as the
inputs to construct a data set, which is subsequently used in a rule learning task
to derive rules explaining the relation between tasks. We provide an overview of
possible dependency measures below.

Weijters et al. [44, 86] use the following dependency measure in the Heuristics
Miner and Flexible Heuristics Miner to assess the level of causality between two
activities a and b ∈AL:

CHAPTER 5. FODINA 151

|a > b|− |b > a|

|a > b|+ |b > a|+d

This dependency measure takes the occurrence of activity a after b as counter-
evidence that b is dependent on a. Even when b is never followed by a, the
metric will never completely reach a value of 1 so long as d > 0, denoting that
absolute con�dence in a dependency relation is never completely possible based
on the given information (the default value for d in (Flexible) Heuristics Miner
equals 1).

The same authors have proposed another causality metric which also takes into
account the distance between a and b [56, 57] and is computed as follows. Every
time activity a is followed by b (before the next occurrence of a), a counter C
is increased with a factor δn, with δ a causality factor ∈ [0, 1] and n the number
of intermediate activities between a and b (the contribution to C is maximal
when n = 0, i.e. when a and b directly follow one another). Finally, when the
calculation of C is �nished, the causality metric is then calculated as:

C

|a|

Maruster et al. also de�ne a variety of causality metrics [63]. Their �rst metric
is equal to the equation above, but divides the summed metric by the minimum
of the overall frequency of activity a and b:

C

min(|a|, |b|)

To measure the tendency of succession |a > b| versus |b > a|, the authors pro-
pose a local metric as follows:

p̂− z1−α/2

√
p̂(1− p̂)
n+ 1

with p̂ =
|a>b|
n+1 , n = |a > b|+ |b > a|.

The idea of this metric is borrowed from statistics and is frequently used to calcu-
late the con�dence intervals for errors (z1−α/2 = 1.96 for a 95% con�dence level).
In this case, the di�erence in magnitude of |a > b| versus |b > a| is compared.

Note that another binomial proportion con�dence interval, i.e. the Wilson score
interval, can also be applied as a dependency measure, which has better proper-
ties than the normal approximation:

152 5.2. PRELIMINARIES

p̂+
z21−α/2

2n − z1−α/2

√
p̂(1−p̂)
n+1 +

z21−α/2
4n2

1+
z1−α/2
n

with p̂ =
|a>b|
n+1 , n = |a > b|+ |b > a|.

Finally, Maruster et al. also de�ne a “global metric” as follows:

(|a > b|− |b > a|)
|L|

|A|× |B|

Mining short loops (meaning loops of length one such as in 〈a,b,b,b,b,c〉 or
length two such as in 〈a,b,c,b,c,b,c,d〉 requires the use of additional metrics,
since, in this case, the counter-evidence of |b > a| will outweigh |a > b|, making
many of the metrics listed above unreliable to discover such structures. As such,
Weijters et al. propose the following de�nitions [44, 86]:

|a > a|

|a > a|+ 1

for length one loops, and

|a >> b|+ |b >> a|

|a >> b|+ |b >> a|+ 1

for length two loops.

Putting all of the above together, the Heuristics Miner algorithm de�nes three
thresholds: dependency threshold, length one loop threshold and length two loop
threshold. Dependencies between tasks that have a dependency measure above
the value of the associated threshold will be accepted in the dependency graph.
Heuristics Miner also includes an “all tasks connected” heuristic which ensures
that each task in the dependency graph has at least one incoming and outgoing
arc (except for the start and end tasks). To do so, the best candidate (i.e. highest
|a > b| value) is taken to determine the primal causal and dependent task. All the
dependency measures discussed above have been taken in consideration during
the design of Fodina. Section 5.4 describes in detail the approach followed by our
proposed miner.

CHAPTER 5. FODINA 153

5.2.3.3 Step 3: Mine the Semantic Information

The next step describes the characterization of the splits and joins in the depen-
dency graph. In the original de�nition of the Heuristics Miner algorithm [44],
the following metric is applied to derive con�dence towards two tasks b and c
occurring in parallel (both dependent on a):

|b > c|+ |c > b|

|a > b|+ |a > c|+ 1

For output bindings containing more than two tasks, an iterative approach is
utilized where tasks are combined in an AND relation if the value of the metric
above for these tasks combined with each current member of the relation exceeds
a given threshold. We refer to the literature for a comprehensive description [44].

In [63] the decision between exclusiveness and parallelism is made simply based
on the following frequencies:

|b > c|

min(|b|, |c|) and |c > b|

min(|b|, |c|)

For exclusiveness between b and c, both values should be zero or small, for par-
allelism, both should be relatively high.

In the Flexible Heuristics Miner algorithm, XOR and AND relations are mined
in a di�erent manner [86]. For an activity a with depending activities b and c,
counts are calculated corresponding with the number of times awas followed by
b only, c only or by both b and c. However, since both b and cmight be activated
by tasks other than a, one cannot simply count the number of times b and c ap-
pear after a (but before the next occurrence of a). Instead, all causal tasks before
b and c should be checked (i.e. connected as an input in the dependency graph)—
which includes a—to determine whether a was the nearest candidate appearing
before b and c. Based on the frequency of the di�erent possible “patterns” (i.e.
{{b}, {c}} and {{b,c}}), an output binding is chosen. The exact procedure on how
this �nal decision is made is left unspeci�ed in [86]. Recall, however, the remark
made in Subsection 5.2.1 regarding the implementation of the Flexible Heuristics
Miner algorithm. One available plugin in ProM 6—“Mine for a Heuristics Net
using Heuristics Miner”—uses the non-�exible metrics (Equation (9)) to discover
the semantics of the split and joins and annotates the nets using the pattern-
based approach described above with frequency information after a Heuristic

154 5.3. IDENTIFIED ISSUES

net has been discovered. The “Mine for a Causal Net using Heuristics Miner”
plugin does use the pattern-based approach, but includes all discovered split and
join patterns in the �nal causal net, making the approach less robust to noise.

5.2.3.4 Step 4 (optional): Mine Long-distance Dependencies

Finally, in a last optional step, the long-distance dependencies are mined. To do
so, another dependency metric with associated threshold is de�ned, making use
of the value of |a >>> b| [86]:

|a >>> b|

|b|+ 1

However, many activity-pairs exist for which this metric will also return a high
value (e.g. between the starting activity and many other activities), although
no additional dependency should be added. Therefore, a check is performed to
see whether it is possible to go from task a to the ending task in the depen-
dency graph without having visited b. If this is possible then the additional long-
distance dependency is added to the dependency graph (as this makes the graph
more precise).

The Flexible Heuristics Miner [86] uses another dependency measure to check
for long-distance dependencies:

(
2× (|a >>> b|)

|a|+ |b|+ 1

)
−

(
2× abs(|a|− |b|)

|a|+ |b|+ 1

)

This metric adds the additional requirement that the frequency of tasks a and b
should be about equal. After modifying the dependency graph, the description of
the algorithm states that semantic information (AND and XOR joins and splits)
should be recomputed.

This concludes the preliminary section with the overview of the Heuristics Miner
algorithm and its variants, and the various dependency metrics described in the
literature.

5.3 Identi�ed Issues

The value of the existing (Flexible) Heuristics Miner algorithms should not be
understated, due to its robustness to noise, ease-of-interpretation and speed. Iit

CHAPTER 5. FODINA 155

Figure 5.1: Some complex event logs result in process models containing unconnected
tasks or tasks which are not on a path from the starting to ending task.

remains one of the most often applied and best performing process discovery
algorithms [47, 154]. However, some issues can still be identi�ed which open
up opportunities for solid improvements. Some of these issues are the result of
faulty or incomplete implementations, whereas others are the result of certain
concepts which are somewhat vague or could be better de�ned. The following
paragraphs provide a comprehensive overview.

5.3.1 Unconnected Tasks

Even when enabling the “all tasks connected” option, the particular complexity
of several event logs (such as the “hospital log” used in the BPI 2011 Challenge5)
causes some tasks to remain unconnected. Figure 5.1 depicts a dependency graph
mined using the Heuristics Miner algorithm in ProM 6 illustrating the issue.

The issue is due both to theory and implementation. The way task connection
is ensured is by adding input and output arcs corresponding with the highest
dependency measure for each task, which does not ensure full connectedness in
the resulting process model.

5DOI: doi:10.4121/d9769f3d-0ab0-4fb8-803b-0d1120�cf54 , see http://data.3tu.nl/
repository/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54.

http://data.3tu.nl/repository/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://data.3tu.nl/repository/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

156 5.3. IDENTIFIED ISSUES

start X
a

X

X

b
X

end
X

X

X

X

Figure 5.2: Non-�tting Heuristics net for the trace 〈start,a,a,a,b,a,a,a, end〉. Arcs
leaving from and joining in the tasks represent an AND-split/join. The diamond shaped
gateways represent XOR-splits/joins.

5.3.2 Non-�tting Process Models

One would expect that a process discovery algorithm would be able to return a
perfectly �tting process model in case where the given event log only contains
one single trace variant. Considering for a moment that duplicate activities could
be mined, such a process model could simply model the sequence of events as
they occur in the trace variant to obtain such a �tting model. The current ver-
sions of Heuristics Miner, however, are not able to do so in all cases. Figure 5.2
shows the Heuristics net obtained after mining the trace 〈start,a,a,a,b,a,a,a,
end〉 (with all thresholds set to their lowest value). The reported Improved Con-
tinuous Semantics (ICS) �tness is 0.66 (below the maximum of 1). The Heuristics
Miner-based Causal net miner present in ProM 6 shows the same issue, whereas
the Heuristics Miner implementation in ProM 5.2 does mine a �tting process
model. It is interesting to observe how many process discovery algorithms fail
such single trace robustness test.

This issue is due both to theory and implementation. In some cases, the interre-
latedness of the dependency thresholds makes it di�cult to con�gure a param-
eter vector which results in a �tting model, in other cases, the inability to mine
duplicate tasks make the resulting model too entangled. Finally, in some cases,
split and join semantics cannot be derived in a correct manner.

5.3.3 ICS Fitness Calculation

The manner by which �tness is reported for mined Heuristics nets is currently
not particularly well described. The �tness reported in the implemented Heuris-
tics Miner is often referred to in literature as the Improved Continuous Semantics

CHAPTER 5. FODINA 157

(ICS) �tness. To be exact, the �tness metric reported is the PFcomplete metric as
described by Alves de Medeiros [66], with traces being parsed using a continuous
semantics token game, meaning that the execution of a trace is continued after
the occurrence of an error (a non-�tting activity was encountered). The exact
manner however how this parsing (or replay) of traces occurs in a Heuristics net
is not clearly speci�ed in literature.

In addition, there is another aspect which warrants mentioning in this con-
text. As shown in the following code fragment6, after calculating the ICS �t-
ness (which is also assigned to the Heuristics net object), a �nal operation
is performed, namely “net.disconnectUnusedElements()”, which
changes the structure of the net and can also in�uence the �tness of the Heuris-
tics net, thus leading to the net having a modi�ed �tness value. The ICS �tness
is, however, not recalculated to re�ect these changes:

480: //DTContinuousSemanticsFitness fitness1 =
481: // new DTContinuousSemanticsFitness(log);
482: //fitness1.calculate(population);
483:
484: ContinuousSemantics fitness1 = new ContinuousSemantics(logInfo);
485: fitness1.calculate(population);
486:
487: //Message.add("Continuous semantics fitness ="+

population[0].getFitness());
488: //Message.add("Continuous semantics fitness ="+

population[0].getFitness(), Message.TEST);
489:
490: ImprovedContinuousSemantics fitness2 =

new ImprovedContinuousSemantics(logInfo);
491: fitness2.calculate(population);
492:
493: //Message.add("Improved Continuous semantics fitness =" +

population[0].getFitness());
494: //Message.add("Improved Continuous semantics fitness =" +

population[0].getFitness(),
495: // Message.TEST);
496:
497: net.disconnectUnusedElements();
498:
499: return net;

This issue is due to implementation.
6Heuristics Miner code fragment from “HeuristicsMiner.java” (version obtained on

23 January 2014, revision 6737). Note the net.disconnectUnusedElements() operation
which is performed after the �tness has been assigned to the Heuristics net.

158 5.3. IDENTIFIED ISSUES

5.3.4 Incorrect Conversion to Petri Nets

The current version of Heuristics Miner (ProM 6) contains a faulty implementa-
tion of a Heuristics net to Petri net convertor. In order to illustrate the problem,
consider the Petri net process model of Figure 5.3(a), which was used to gener-
ate an event log. When mining this event log with Heuristics Miner, the out-
put bindings of activity A are set correctly, namely as {{E}, {B,C}} (E, or B and
C should follow A). However, when using the conversion technique to convert
from Heuristics nets to Petri nets, the Petri net of Figure 5.3(b) is obtained, where
nowA is followed by E, orB (only), orC (only). Clearly, this is not the desired be-
havior. Note that this issue is not present in the Heuristics Miner version of ProM
5. The reason behind this issue is an erroneous interpretation of the semantics of
the input and output bindings for Heuristics nets, which di�er from those found
in Causal nets. That is, within the Heuristics net, the output bindings of activity
A are set to {{B,E}, {C,E}}. Note once more the somewhat ambiguous semantics
present when using Heuristics nets, as the bindings now represent a conjunctive
set of disjunctive subsets. In addition, there is another intricacy present which
disallows choosing the combination of E (�rst subset) and C (second subset), as
selecting an activity in one subset also implies the selection of this same activity
when it appears in other subsets. Clearly, the de�nition of the bindings as used
within Causal nets is more straightforward.

In addition, the ProM 6 implementation of Heuristics Miner su�ers from another
issue related to Petri net conversion—albeit not directly related to the implemen-
tation of the miner itself. Contrary to the Heuristics Miner in ProM 5, the ProM
6 miner does not include the post-mining step of removing redundant invisible
transitions. Instead, ProM 6 o�ers a separate plugin to do so. However, the “Fu-
sion of Parallel Transitions”-Murata rule [38] is enabled by default and removes
invisible transitions modeling activity “skips”, thus negatively impacting the be-
havioral properties of the converted Petri net (the reduced Petri net will not be
as �tting). ProM 5 correctly handles these cases.

This issue is due to implementation.

5.3.5 Mining Duplicate Tasks

As mentioned above, no heuristic process discovery algorithm is able to mine du-
plicate activities. Alves de Medeiros et al. also use Heuristics nets as the process

CHAPTER 5. FODINA 159

B
D

A

C

start

end
E

(a)O
riginalPetrinetm

odel.

B

start
D

C
A

E
end

(b)ErroneousPetrinetm
odelafterconverting

m
ined

H
euristicnet.

Figure
5.3:A

n
originalPetrinetm

odeland
resultafterm

ining
on

generated
eventlog

and
converting

to
Petrinetw

ith
H

euristicsM
iner.

160 5.3. IDENTIFIED ISSUES

a end
e

d
a astart

b

c

(a) Original Petri net model.

e

d

b

end

c

astart

(b) More complex Petri net model after converting mined
Heuristic net.

Figure 5.4: An original Petri net model and result after mining on generated event log and
converting to Petri net with Heuristics Miner.

representational language, and apply a genetic algorithm [65, 155, 156] which
is able to mine duplicate activities, where duplicate activities containing shared
input or output tasks are punished. However, running this Genetic Miner su�ers
from a high computational complexity.

The ability to detect duplicate tasks could nevertheless greatly improve the un-
derstandability and structural clarity of the obtained process model. To illustrate
why this is the case, Figure 5.4 shows yet another comparison between an orig-
inal Petri net model and the (correctly converted) Petri net model after running
Heuristics Miner. The fact that all activities sharing the same label are treated as
a single task in the process model leads to the creation of extra arcs and depen-
dencies and thus more structurally complex results. Even although the mined
Petri net does perfectly �t the behavior in the event log, the ability to discover
duplicate tasks would greatly improve the understandability and clarity of dis-
covered process models.

This issue is due to theory, as the current theory does not describe a method to
mine duplicate tasks.

CHAPTER 5. FODINA 161

5.3.6 Long-distance Dependencies

The way long-distance dependencies are constructed di�ers somewhat in the ac-
tual implementation of Heuristics Miner compared to the approach as described
in the literature [44, 86]. The following code fragment7 shows that the |a >>> b|

count between two tasks is only incremented once within the same trace, al-
though multiple occurrences of the same a >>> b pattern can exist within
the same trace. For example, the trace 〈a,b,a,a,b,b〉 then has |a >>> b| = 1
(〈a,b,a,a,b,b〉) while in fact |a >>> b| = 2 (〈a,b,a,a,b,b〉) according to the
de�nition (recall that the indirect successions found in this trace are also consid-
ered as direct successions):

119: ArrayList<Integer> lastEvents =
new ArrayList<Integer>(trace.size());

[...]
123: for (XEvent event : trace) {
124:
125: // XExtendedEvent extendedEvent = XExtendedEvent.wrap(event);
126:
127: Integer eventIndex = null;
[...]
131: String eventKey = logInfo.getEventClasses().getClassOf(event).getId();
132: // String eventKey = eventName + "+" + eventTransition;
133: eventIndex = keys.get(eventKey);
134:
135: if (!lastEvents.contains(eventIndex)) {
136:
137: for (Integer index : lastEvents) {
138:
139: // update long range matrix
140: metrics.incrementLongRangeSuccessionCount(index,eventIndex,1);
141: }
142: }
[...]
170: lastEvents.add(eventIndex);
[...]
173: }

This issue is due to implementation.

Furthermore, the current long-distance dependency de�nition in Heuristics
Miner is somewhat overly sensitive regarding. Figure 5.5 illustrates why this
is the case. In Figure 5.5(a), the original Petri net is shown, containing two
long-distance dependencies. Using the default long-distance dependency thresh-
old in Heuristics Miner, these long-distance dependencies remain undiscov-

7Heuristics Miner code fragment from “HeuristicsMiner.java” (version obtained on 23
January 2014, revision 6737). The way |a >>> b| is calculated di�ers from the approach described
in literature.

162 5.3. IDENTIFIED ISSUES

apply
ForLicensestart

doPracticalExam
DriveCars

doPracticalExam
RideMotorBikes

apply
ForLicense

obtain
SpecialInsurance

end

attendClasses
DriveCars

attendClasses
RideMotorBikes doTheoreticalExam getResult

end

receive
License

(a) Original Petri net model containing two long-distance dependencies (non-local non-free choice)
between attendClassesDriveCars and doPracticalExamDriveCars, and between attendClassesRide-
MotorBikes and doPracticalExamRideMotorBikes.

apply
ForLicense

attendClasses
RideMotorBikes

attendClasses
DriveCars

start

receive
License

enddoPractical
ExamDriveCars getResult

obtain
SpecialInsurance

doPracticalExam
RideMotorBikes

doTheoreticalExam

(b) Dependency graph mined with Heuristics Miner containing unwanted long-distance depen-
dency between start and receiveLicense.

Figure 5.5: An original Petri net model and result after mining on generated event log and
converting to Petri net with Heuristics Miner.

ered. Lowering the threshold allows to discover the long-distance dependen-
cies, but also causes an unwanted long-distance dependency between start
and receiveLicense to show up in the resulting process model (shown in Fig-
ure 5.5(b) as a dependency graph). A check is performed to see whether it is possi-
ble to go from start to the �nal task (end) in the dependency graph without vis-
iting receiveLicense in order to prevent the creation of unwanted long-distance
dependencies, but since this is in fact possible—meaning: receiveLicense is not
always visited—the dependency is added. However, since start always occurs in
each possible trace anyway, this long-distance dependency should not explicitly
be modeled.

This issue is due to theory.

Finally, a word should be devoted to mention the fact that splits and joins (the
AND and XOR relations) should be recalculated after adding long-distance de-
pendencies in the dependency graph. This is not done as such in the implemen-
tation of Heuristics Miner, however. Instead, long-distance dependencies are just
added to the existing input and output bindings such that the dependent task is
added as an obligation to each subset.

CHAPTER 5. FODINA 163

5.3.7 Mining Split and Join Semantics

Lastly, we devote some attention to the way splits and joins are mined in the
currently available set of heuristic discovery algorithms. Although the recom-
mended method to mine the AND and XOR relations in the input and output
bindings is to make use of pattern-based techniques as described in [86], one im-
plementation of the Flexible Heuristics Miner still uses the non-�exible metric-
based technique as indicated before. A second implementation, geared towards
the discovery of Causal nets (as opposed to Heuristics nets) is also available,
which does use pattern-based frequency counting to discover and annotate the
split and join semantics, but each seen pattern is included in the resulting Causal
net, which makes the implementation sensitive to noise.

To illustrate this, consider Figure 5.6 where two extreme examples are depicted.
Consider �rst once more the event log containing only the trace 〈start,a,a,a,
b,a,a,a,end〉. On the left hand side of Figure 5.6(a), the process model is shown
after mining with Heuristics Miner. Recall from Subsection 5.3.2 that the out-
put bindings of a are incorrectly mined, but let us consider for a moment these
to be correct, i.e. O(a) = {{A}, {B}, {END}}. However, even when considering
the correct bindings, it can still be argued that it is possible to obtain a better
process model as shown in the right hand side of Figure 5.6(a), namely with
an AND split from start, as this prevents multiple executions of b—behavior
which was not seen in the given trace. Of course, without the event log being
complete enough, deciding which process model is “right” is a subjective mat-
ter (perhaps just modeling the sequence as is can be regarded as an even better
solution). In any case, however, it would be bene�cial to o�er users the possi-
bility to communicate their preferences to this regard. As will be seen below,
we have added the option to do so in Fodina. Next, the example in 5.6(b) shows
two Petri nets converted (correctly) after mining for a log containing the set of
traces starting with start and ending with end and with all possible permu-
tations of a, b and c between them with length three, i.e. 〈start,a,a,a,end〉,
〈start,a,a,b,end〉, . . . , 〈start,c,c,b,end〉, 〈start,c,c,c,end〉. The net on the
left shows the process model obtained after mining with Heuristics Miner. Note
that the AND and XOR relations in the start-split are not mined correctly (out-
put binding O(start) = {{a,b,c}}), since traces not containing all activity types
(such as 〈start,a,a,b,end〉 cannot be �ttingly executed). The Petri net on the
right shows the desired outcome (mined with Fodina).

This issue is due both to implementation and theory.

164 5.3. IDENTIFIED ISSUES

st
ar
t

a
b en
d

st
ar
t

a b
en
d

(a
)M

in
ed

de
pe

nd
en

cy
gr

ap
hs

fo
rt

he
tra

ce
〈s
t
a
r
t
,a

,a
,a

,b
,a

,a
,a

,e
n
d
〉.

O
n

th
el

ef
t,

a
le

ng
th

tw
o

lo
op

is
us

ed
w

hi
le

on
th

e
rig

ht
sid

e,
a

sp
lit

in
st

ar
ti

sm
od

el
ed

,p
re

ve
nt

in
g

m
ul

tip
le

ex
ec

ut
io

ns
of
b

.

b a

st
ar
t

en
d

c
c

en
d

b

a
st
ar
t

(b
)M

in
ed

Pe
tri

ne
ts

(a
fte

rc
on

ve
rs

io
n)

fo
rt

he
ev

en
tl

og
co

nt
ai

ni
ng

tra
ce

ss
ta

rti
ng

w
ith
s
t
a
r
t

an
d

en
di

ng
in
e
n
d

w
ith

al
lp

os
sib

le
pe

rm
ut

at
io

ns
of
a

,b
an

d
c

be
tw

ee
n

th
em

.T
he

pr
oc

es
sm

od
el

on
th

e
le

ft
is

in
co

rr
ec

t,
sin

ce
it

pr
ev

en
ts

th
e

ex
ec

ut
io

n
of

tra
ce

sn
ot

co
nt

ai
ni

ng
al

la
ct

iv
iti

es
(e

.g
.〈
s
t
a
r
t
,a

,a
,b

,e
n
d
〉)

.

Fi
gu

re
5.6

:T
w

o
ex

am
pl

es
to

ill
us

tra
te

di
�e

re
nc

es
in

pr
oc

es
sm

od
el

qu
al

ity
.

CHAPTER 5. FODINA 165

5.4 Process Discovery with Fodina

5.4.1 Discovering Causal Nets

Based on a thorough literature study (Subsection 5.2.1), containing a breakdown
of all available and currently applied heuristic process discovery variants (Sub-
section 5.2.3) and inspecting the issues present in these variants (Section 5.3) as
outlined above, we now propose a new heuristic process discovery algorithm—
named Fodina—which aims to provide a robust iteration of this set of techniques
in order to mine Causal nets, including also some new features which will be
discussed in the remainder of this section.

An overview of the steps performed by Fodina to mine a Causal net is given as
follows (note the similarities and di�erences with Heuristics Miner):

1. Convert the event log to a “task log”. Contextual information is used to
(optionally) mine duplicates.

2. Derive counts of “basic relations” between activities in the event log.

3. Construct a dependency graph using “dependency measures” or “causal
metrics”, describing the basic causal semantics between activities (follows
and precedes relations).

4. Set the start and end task.

5. Resolve binary con�icts (optional).

6. Assure each task is reachable in the dependency graph (optional).

7. Mine long-distance dependencies (optional).

8. Mine the semantic information, i.e. the sets of input and output bindings
per activity (representing the XOR and AND splits and joins).

5.4.1.1 Step 1: Construct Task Log

In the �rst step, the given event log is converted to a “task log”, where each
activity is the event log (i.e. in AL) is mapped to a task to-be included in the

166 5.4. PROCESS DISCOVERY WITH FODINA

resulting Causal net (i.e. to TC). When not mining duplicate tasks, this map-
ping is trivial (∀t ∈ TC : [∃!a ∈ AL : [µ(t) = a]]). When the option is set to
mine duplicates, the same activity in the event log can be mapped to multiple
tasks in TC. To determine which activities should be duplicated, we apply a
strategy inspired by Genetic Miner [66]. In this technique, it is assumed that
duplicate tasks can be distinguished based on their local context, meaning the
set of input and output elements of the duplicates. The aim of Genetic Miner
is then to mine process models in which duplicates of a same task do not have
input or output elements in common. This approach has a couple of bene�ts.
For example, parsing Causal nets with duplicate tasks remains relatively simple,
because the output elements of the duplicates are su�cient to choose which du-
plicate task to �re (looking forward to the next events in the trace). In Genetic
Miner, the genetic algorithm’s �tness measure incorporates a punishment factor
where an individual in the population is punished whenever duplicates of a same
task have common input or output elements. Based on this, we have included
a procedure which directly infers the duplicate tasks from the given event log,
so that the time-consuming step of running a genetic algorithm is avoided. To
do so, we apply the same principle of “local context” as explained above. Say
that we are trying to derive if an activity a in the event log L should be du-
plicated. We construct a set of contexts C = {(σi−1,σi,σi+1)|σ ∈ L,σi = a}.
Next, we construct the set of grouped contexts C ′ = {c ∈ P(C)|∀(x,y,z) ∈
c : [@(i, j,k) ∈ C\c : j = y ∧ (i = x ∨ k = z)]}, which corresponds with the
duplicate tasks to be placed in the Causal net. As an example, consider the
event log: {〈start,a,b,c,a,d,e,a,end〉, 〈start,a,c,b,a,d,e,a,end〉, 〈start,a,b,
c,a,e,d,a,end〉, 〈start,a,c,b,a,e,d,a,end〉}. The set of contexts for activity
a is then {(start,a,b), (start,a,c), (c,a,d), (b,a,d), (c,a,e), (b,a,e), (e,a,end),
(d,a,end)}. The set of grouped contexts is constructed so that the local contexts
of a are separated so that they do not overlap with one another: {{(start,a,b),
(start,a,c)}, {(c,a,d), (b,a,d), (c,a,e), (b,a,e)}, {(e,a,end), (d,a,end)}}, repre-
senting three duplicate tasks.

Note that deriving duplicate tasks like this might indeed lead to the duplica-
tion of activities which could nevertheless be kept as a single task in the process
model without impacting �tness or heavily a�ecting understandability. How-
ever, the choice is made to ignore this—since these “redundant” duplicate tasks
still remain easy to interpret in the �nal process model. However, to mitigate
against noise leading towards the derivation of undesired duplicate tasks (con-
sider for example an activity which is inserted at a random position in the event
log and is thus likely to be surrounded by an unseen context), we introduce a

CHAPTER 5. FODINA 167

“duplicate task threshold”, which works as follows. When a duplicate task is
created with a frequency which is below a the duplicate task threshold ratio t
(frequency of this particular duplicate task over frequency of all duplicate tasks),
the duplicate task for this particular context is removed and merged with the
duplicate task having the greatest frequency in the event log. Note that an al-
ternative strategy consists of ignoring such noisy events altogether. However,
we consider such “cleaning” of event logs (removing activities in the traces) as
a pre-discovery task which should be executed before invoking Fodina. In ad-
dition, an option was added to better allow the duplication of activities which
also repeat. Consider for example again the trace 〈start,a,a,a,b,a,a,a,end〉.
Based on this, the following set of grouped contexts would be constructed for a:
{{(start,a,a), (a,a,a), (b,a,a), (a,a,end)}}. In other words, the context (a,a,a)
causes that no duplicate tasks can be found for activity a. Therefore, we allow
to “collapse” repeated tasks during the derivation of duplicates, so that the two
duplicate tasks for a can then be discovered (before b and after b). For the re-
mainder of this chapter, we can thus assume the mapping function µ as a given,
which is able to unambiguously map activities occurring in traces in an event
log to a task occurring in the causal net. Given the way duplicate tasks are dealt
with, µ is able to map an activity to one single task in the causal net event even
when this activity might be duplicated in the causal net, by inspecting the local
context of this activity.

5.4.1.2 Steps 2, 3 and 4: Derive Basic Relations and Construct Dependency
Graph

The second step (derivation of basic relation counts) is performed completely
similar as done in Heuristics Miner (see Subsection 5.2.3.1), making sure, how-
ever, to correctly derive the |a >>> b| information.

To construct the dependency graph, we make use of a similar dependency mea-
sure as in Heuristics Miner, as we have found based on experiments—evaluating
and analyzing the dependency measures discussed in Subsection 5.2.3—that this
best re�ects the user’s expectations and has the best impact on the outcome of
the process model. For normal dependencies (discovered �rst), however, we do
apply a di�erent metric, i.e:

|a > b|

|a > b|+ |b > a|+d

168 5.4. PROCESS DISCOVERY WITH FODINA

(with d the dependency divisor, by default set to 1), as we argue that the di-
rect succession of a task a after b is not always suitable direct counter-evidence
against the direct succession of b after a. (The metric now also lies in the range
[0, 1].) For length one (discovered second) and length two (third) loops, recall the
use of the metrics

|a > a|

|a > a|+d

and

|a >> b|+ |b >> a|

|a >> b|+ |b >> a|+d

respectively. All associated thresholds in Fodina also operate separately from
each other during the construction of the dependency graph, which is not the
case in the Heuristics Miner implementation, where changing one threshold (e.g.
to include more dependency arcs) might have no e�ect without also lowering
other thresholds (since multiple comparisons are performed, including against
a non-con�gurable “positive observations” threshold for the ProM 6 implemen-
tations), which in turn might cause other undesired dependencies to show up.
We have removed the “positive observations” and “relative-to-best” thresholds
in the Fodina implementation, as it was observed that their impact is negligible
in most cases (or covered by the other thresholds) and that most end-users do
not change their default values [154].

During the discovery of length two loops to add to the dependency graph, users
have the option to prohibit a length two loop dependency between a and b (from
a to b and b to a) when these two tasks are both already involved in a length
one loop with themselves (length one loops are mined before length two loops).
This can be bene�cial in cases where both activities are length one loops and both
dependent in an AND relation on the same, third activity, leading to observations
such as 〈start,a,b,a,a,a,b,b,a,b,b,b,end〉. This trace can then be con�gured
to be modeled in two ways, either with a length two loop (and a XOR split/join)
or without a length two loop (with an AND split/join).

In the fourth step, the start and end tasks are set in the dependency net. If de-
sired, users can specify that arti�cial starting and ending tasks should be used,
which are prepended and appended respectively to each trace in the event log,
and connected with the other activities using the same dependency metrics as
described above.

CHAPTER 5. FODINA 169

5.4.1.3 Step 5 (optional): Resolve Binary Con�icts

As stated above, during the discovery of length two loops users may prohibit
a length two loop dependency when the two associated tasks are both already
involved in a length one loop with themselves.

Additionally, applying the concept of “binary con�icts” as described in [67, 157]
(Fuzzy Miner), users have the option to enable Fodina to try to convert all
length two loops to a single AND relation whenever possible. As such, the trace
〈start,a,a,a,b,a,a,a,end〉, for example, can now be mined in three di�erent
(all �tting) ways, as depicted by Figure 5.7. The �rst net (a) depicts a dependency
net obtained without mining for duplicates and allowing binary con�icts. Con-
trary to Heuristics Miner, all splits and joins are in a XOR relation, which thus
leads to a �tting process model. The dependency graph in (b) resolves the binary
con�icts and relinks the length two loop between a and b so that they are both
dependent on start. In the �nal step (mining of split and join semantics), the
split in start (and join in end) are correctly mined as an AND relation. Finally,
the dependency graph in (c) shows the result obtained when enabling the discov-
ery of duplicate tasks. As can be seen, Fodina provides extensive con�guration
options to drive the layout of the resulting process model, while all three models
�t the given trace.

5.4.1.4 Step 6 (optional): Assure Task Reachability

Next, step �ve (optional) assures that each task in the dependency graph is con-
nected, as is a requirement for a valid Causal net. This is not implemented by
checking if each task has at least one input and output arc in the dependency
graph—similar as done by Heuristics Miner—but rather by continuing to add the
next-best dependency graph until all tasks lie on a path between the start and
end activity. Enabling this option almost completely reduces the e�ort involved
when trying to �nd good threshold values, as well-scoring dependency arcs will
be added until the dependency graph is valid. The implementation of assuring
task connectedness in Fodina is more time consuming than the simple check per-
formed by Heuristics Miner, but prevents the discovery of nets still containing
disconnected elements, as was shown in Subsection 5.3.1.

170 5.4. PROCESS DISCOVERY WITH FODINA

start a b

end

(a) Dependency net obtained without
mining for duplicate tasks and allowing
“binary con�icts”. All splits and joins are
in a XOR relation.

start

a

b
end

(b) Dependency net obtained without
mining for duplicate tasks and with the
“resolve binary con�ict” option enabled,
converting the length two loop to an
AND split/join.

start a b a end
(c) Dependency net obtained with mining
for duplicate tasks enabled.

Figure 5.7: Di�erent dependency graph outcomes obtained with the Fodina miner under
various con�gurations for the trace 〈start,a,a,a,b,a,a,a, end〉.

5.4.1.5 Step 7 (optional): Mine Long Distance Dependencies

The next step is also optional and mines long-distance dependencies from the
event log, which is performed before the actual mining of the semantic AND
and XOR relations in Fodina. We use the same dependency measure as the one
described for Flexible Heuristics Miner [86], i.e.:

(
2× (|a >>> b|)

|a|+ |b|+ 1

)
−

(
2× abs(|a|− |b|)

|a|+ |b|+ 1

)

However, to better avoid the mining of unnecessary long-distance dependencies,
we not only perform a check to see whether it is possible to go from a to the end
task without visiting b (if b is always visited, the long-distance dependency is
unnecessary), but also evaluate whether it is possible to go from the start to
end task without visiting a (if a is always visited, the long-distance dependency
is unnecessary) or without visiting b (similarly, if b is always visited, the long-
distance dependency is unnecessary). Only if all these checks pass, the candidate
long-distance dependency is introduced in the Causal net.

CHAPTER 5. FODINA 171

5.4.1.6 Step 8: Mine Split and Join Semantics

Finally, the dependency graph is converted to a Causal net by mining the AND
and XOR relations to construct the input and output bindings. Our approach to
do so is comparable to the pattern-based approach of Flexible Heuristics Miner,
but adds con�gurable options to make the discovery more robust to noise.

To construct the output binding for a task, for example, we count the number
of times each pattern (meaning a possible, particular subset of output tasks) was
found after the occurrence of this task, but: (�rstly) before the next occurrence
of the task under consideration and (secondly) where the task under considera-
tion was also the nearest input task for the pattern. If one of the output tasks is a
long-distance dependent task, however, the nearest input check is not performed
for this task, as the task under consideration can never be the nearest input (due
to the dependency being long-distance). This method of including long-distance
dependencies in the calculation of split and joins in not included in the descrip-
tion of the Flexible Heuristics Miner. Another improvement relates to the way
patterns are selected for inclusion in the Causal net (recall that each pattern forms
a di�erent possible subset of activities in an AND relation in the output binding,
with the subsets themselves being involved in a XOR relation). First, every pat-
tern with a frequency ratio exceeding a con�gurable threshold is selected. Next,
the remaining output tasks in the dependency graph which are not included in
any output binding (in the thus-far selected patterns) are added as singleton sub-
sets to the output binding. Con�guring the pattern selection threshold thus also
has an impact on the resulting Causal net’s precision and generalization ability,
as increasing the thresholds leads to the selection of less patterns (i.e. only the
frequent patterns are selected), with potentially more output activities remaining
which are then added as singleton subsets. Additionally, since the calculation of
the splits and joins is the most computationally expensive step, we have imple-
mented this step in a multi-threaded fashion, thus performing the calculation in
a parallel manner.

Fodina has been implemented as a ProM 6 plugin. Apart from the aspects dis-
cussed above, the implemented algorithm also provides the ability to import and
export Causal nets (one of the two Heuristics Miner implementations in ProM
6 currently lack this option), a visualizer which allows users to change the de-
pendency thresholds mentioned above and immediately see the results in the
dependency graph without having to restart the mining step, and a conversion
plugin which allow to convert Causal nets to Petri nets. These technical addi-

172 5.4. PROCESS DISCOVERY WITH FODINA

tions will not be discussed in further detail in this work, as they do not provide
theoretical background and can be inspected by running the implementation.

5.4.2 Causal Net Conformance Checking Metrics

5.4.2.1 Heuristic Execution Semantics

Next to the process discovery task, the process mining research �eld describes
a second important analysis task, denoted as conformance checking, where ex-
isting process models are compared with behavior as captured in event logs so
as to measure how well a process model performs with respect to the actual ex-
ecutions of the process at hand. As such, the “goodness” of a process model
is typically assessed over the following quality dimensions: �tness (or: recall,
sensitivity), indicating the ability of the process model to correctly execute the
observed behavior; precision (or: appropriateness), i.e. the model’s ability to dis-
allow unwanted behavior; generalization, which indicates the model’s ability to
avoid over�tting and allow for unseen behavior; and �nally, simplicity (or: struc-
ture, complexity), stating that simpler process models should be preferred above
more complex ones if they are able to �t the observed behavior just as well.

In order to determine the quality of process models mined with Fodina in ac-
cordance with the given event log (or a new log), we �rst de�ne an execution
semantic for Causal nets, similar to the semantics used by the Improved Contin-
uous Semantics (ICS) metric in Heuristics Miner [66]. Recall from the preliminary
section that parsing a trace by a Causal net boils down to deriving a valid binding
sequence, i.e. starting from the start task and ending with the end task without
any pending obligations, and only removing pending obligations (consumed by
the input binding chosen when executing a task). Also recall that the semantics
of Causal nets are non-local, as an output binding may create the obligation to
execute an activity much later in the process. Additionally, in the case of an out-
put binding consisting of multiple sets of sets of tasks, it is not clear at the time
of executing the task at hand which of the output bindings will be resolved later
on. As such, to streamline and speed up the parsing of traces when “replaying”
them in a Causal net, we implement a heuristic replay procedure as follows.

During the replay, a set of pending obligations is kept which must be ful�lled by
future tasks. These obligations are nothing more than the set of output bindings
derived from earlier executed tasks which still must be resolved: PO = {to|t ∈

CHAPTER 5. FODINA 173

TC,o ⊆O(t)}. As such, PO is initially empty when replaying a trace σ. Next, all
activitiesσi ∈ σ are iterated. Each time an activity is �red, the best task candidate
tasks among the duplicates in the Causal net is chosen (thus: µ(σi)—recall the
mapper function introduced above). Then, for the selected task which is to be
�red, the best input binding ∈ I(µ(σi)) is determined based on the input binding
containing the least amount of unsatis�ed (“missing”) input tasks. An input task
x for an input binding ∈ I(µ(σi)) is unsatis�ed when @to ∈ PO : [t = x∧µ(σi) ∈⋃
(o)]. Naturally, the most optimal input binding is one which has no missing

input tasks and can thus �re without error; in the case where multiple input
bindings can be satis�ed, the largest one containing the most amount of tasks is
selected. After �ring, the set of pending obligations is updated. First of all, the
�red task µ(σi) is removed from all pending obligations which still contain the
�red task in one of their output bindings which still must be resolved. Formally:

∀b ∈ o, to ∈ PO : [µ(σi) ∈
⋃
(o)] update binding:

b =

b \µ(σi) if µ(σi) ∈ b
∅ if µ(σi) /∈ b

Once a pending obligation to ∈ PO is ful�lled (meaning that no activities are
present in the pending output bindings: ∀b ∈ o : [b = ∅]), it is removed from
the set of pending obligations altogether, i.e. PO = PO \ to. Finally, before
moving on to the next activity, the list of pending obligations is updated with a
new obligation containing the output bindings of the activity which was �red,
i.e. PO = PO ∪ {µ(σi)O(µ(σi)

}. At the end of trace replay, all leftover pending
obligations are iterated and counted (using the pending output binding in each
obligation having the least amount of tasks still pending) to calculate the number
of remaining tokens, i.e. equal to ∑

to∈PO |argminb∈o(|b|)|. Note that this re-
play procedure is heuristic, as it uses a local �ring semantic to determine the best
input set instead of considering each possible execution binding for a Causal net
and see whether the trace can be found in such a binding (as this leads to an ex-
plosion of state for large Causal nets). Nevertheless, for Causal nets mined with
Fodina (and other heuristic miners), this replay semantic is able to correctly parse
the traces contained in the event log.

174 5.4. PROCESS DISCOVERY WITH FODINA

As a simple example, consider the dependency graph in Figure 5.7(b) once again.
The trace 〈start,a,a,a,b,a,a,a,end〉 is now replayed as follows:

Task σi I(σi) O(σi) PO

start {{∅}} {{a,b}} {start{{a,b}}}

a {{start}, {a}} {{a}, {end}} {start{{b}},a{{a},{end}}}

a {{start}, {a}} {{a}, {end}} {start{{b}},a{{a},{end}}}

a {{start}, {a}} {{a}, {end}} {start{{b}},a{{a},{end}}}

b {{start}} {{end}} {a{{a},{end}},b{{end}}}

a {{start}, {a}} {{a}, {end}} {b{{end}},a{{a},{end}}}

a {{start}, {a}} {{a}, {end}} {b{{end}},a{{a},{end}}}

a {{start}, {a}} {{a}, {end}} {b{{end}},a{{a},{end}}}

end {{a, b}} {{∅}} ∅

The �rst three columns depict the �red task and its input and output bindings.
The boldfaced input binding denotes the choice made by the replay algorithm in
order to �re the task. The �nal column contains the list of pending obligation.
To �re the �rst start activity, for instance, the only available input binding is
an empty set and hence, this activity can �re. The list of pending obligations
is updated with the output bindings for start. Next, to �re a, both input bind-
ings ({start} and {a}) are evaluated to choose the most appropriate one. In this
case, a is not present in the list of pending obligations, but start is and does
still enable a (a is contained in one of the output bindings coupled to start). As
such, this input binding is chosen. The list of pending obligations is updated as
follows: �rst, a is removed from all the pending output bindings of start. Next,
new obligations are added with the output bindings for a. To �re the second a
task, both input bindings are evaluated again. Now, however, the pending output
bindings for start are no longer able to satisfy the execution of a, since a is not
contained anymore in any of the pending output bindings for start. However,
the list of pending obligations now also contains a{{a},{end}}, which does contain
a in one of its output bindings. Hence, the {a} input binding is chosen for the sec-
ond a task. Once more, the list of pending obligations is updated as follows: the
pending output bindings related to start do not contain a and hence remain un-
touched. The pending output bindings related to a ({a} and {end}) do contain a
and are thus updated in accordance with Equation (17): a is contained in {a} and
removed from this set, which then becomes empty; a is not contained in {end}

and as such this complete output binding emptied. All pending output bindings
related to a are now empty, and hence, this obligation is removed from PO. Fi-
nally, a new set of obligations related to the just executed a task (a{{a},{end}}) is

CHAPTER 5. FODINA 175

added again. Considering the �nal end task, only one input binding ({a,b}) is
available but is also enabled (both a and b are in the list of pending obligations
and still allow end in one of their pending output bindings). The list of pending
obligations is updated as follows: b{{end}} still contains end in one of its pending
output bindings and as such, end is removed from the (single) output binding,
resulting in an empty set and discarding this obligation. a{{a},{end}} also con-
tains end in one of its pending output bindings and as such, end is removed
from {end} and {a} is emptied as this binding does not contain end, hence also
discarding this second pending obligation. This leaves an empty set of pending
obligations. Note that all tasks in this trace can be �ttingly executed.

5.4.2.2 Conformance Checking Metrics

Now that we have de�ned event-local execution semantics for Causal nets, vari-
ous conformance checking metrics can be de�ned. First of all, we have reimple-
mented the Improved Continuous Semantics (ICS) metric to use with our de�ned
execution semantics. The actual de�nition of the ICS metric itself is equal to the
one applied by Heuristics Miner and its variants, i.e. equal to the �tness metric
PFcomplete as described by Alves de Medeiros [66]. The ICS �tness after replaying
a log L on a Causal net CN = (TC, ts, te, I,O) is thus:

ICS(L,CN) =
pTa−

(
mTo

|L|−mTr+1 + rTo
|L|−rTr+1

)
∑
σ∈L |σ|

(range:]−∞, 1]) with pTa (“parsed tasks”) equal to the number of activities which
could be successfully executed by the process model, mTo (“missing tokens”))
equal to the total number of tokens which were missing while replaying the
process log, rTo (“remaining tokens”) equal to the total number of tokens which
were remaining after replaying the process log, and with mTr (“missing traces”)
and rTr (“remaining traces”) equal to the number of traces where tokens were
missing, or remaining after the trace replay respectively. Note that—using our
de�ned execution semantics—a missing token is created for each task in the cho-
sen input binding of a �red task which was not present in the list of pending
obligations. Similarly, a remaining token is created for each task belonging to
the smallest output binding coupled to a pending obligation. For instance, if the
�nal set of pending obligations equals {a{{x}},b{{x},{y,z}}}, two missing tokens are
created (one for {x} as the smallest pending output binding for a and one for {x}

as the smallest pending output binding for b).

176 5.4. PROCESS DISCOVERY WITH FODINA

Next, we also de�ne two more coarse-grained metrics which operate on the de-
pendency graph (TC,D) de�ned over CN = (TC, ts, te, I,O) withD = {(a,b)|a ∈
TC∧b ∈ TC∧(a ∈ �b∨b ∈ a�)}. The �rst metric just de�nes a straightforward
�ow evaluation based on the presence of arcs in the dependency graph:

Flow(L, (TC,D)) =
pFlows

pFlows+upFlows

(range: [0, 1]) with pFlows (“parsed �ows”) = |{(σi,σi+1)|σ ∈ L, 1 6 i < |σ|,
(µ(σi),µ(σi+1)) ∈ D}| and upFlows (“unparsed �ows”) = |{(σi,σi+1)|σ ∈ L,
1 6 i < |σ|, (µ(σi),µ(σi+1)) /∈D}|.

The second metric de�nes a fuzzy �tness evaluation, by parsing the dependency
graph in a similar way as the semantics de�ned by Fuzzy Miner [67, 157]:

Fuzzy(L, (TC,D)) =
pTasks

pTasks+upTasks

(range: [0, 1]) with pTasks (“parsed tasks”) the number of tasks which could
be parsed by the dependency graph and upTasks (“unparsed tasks”) the tasks
which could not. To determine which activities in a trace σ can be parsed, a set
of enabled tasks is constructed, initially set to an empty set. Next, for each activ-
ity σi ∈ σ, it is checked whether µ(σi) is present in the set of enabled tasks, or
whether the corresponding task in the dependency graph contains no incoming
arcs. If so, this activity σi is parseable and removed from the set of enabled tasks.
Next, the tasks {b|b ∈ Tc|(σi,b) ∈ D} are added to the set of enabled tasks and
the following activity in the trace is evaluated. This corresponds to the “AND
split; memoryless XOR join” semantics as de�ned in Fuzzy Miner.

As we have de�ned event-local execution semantics, the possibility exists to re-
utilize existing conformance checking metrics which depend only on such se-
mantics (i.e. determining whether an activity in a trace can be parsed by the
model or not)—even although their original implementation may assume another
representational language to represent process models. We refer for example to
our conformance checking metrics presented in Chapter 3. These metrics can
directly be applied to our proposed approach, since our de�ned execution se-
mantics allow to determine for each a ∈ AL, given a list of pending obligations,
whether this activity can be executed �ttingly or not.

This allows us to directly de�ne an event-granular �tness metric for causal nets
as follows:

CHAPTER 5. FODINA 177

Recall(L,CN) =
pTasks

pTasks+upTasks

(range: [0, 1]) with pTasks (“parsed tasks”) again the number of parsed tasks and
upTasks (“unparsed tasks”) the tasks which could not, but now based on the
replay procedure executed on the Causal net. Recall that a task is unparseable
whenever no satis�ed input binding can be selected for the task to be executed.

Finally, we also remark that the discovered Causal nets can be converted to Petri
nets, which allows for a plethora of other conformance checking metrics avail-
able in literature to be applied.

The following section describes a thorough evaluation experiment to benchmark
Fodina against related heuristic process discovery algorithms. For this experi-
ment, we include two additional metrics which can be constructed over general,
event-granular conformance checking techniques. The �rst is the well known
“parsing measure”, which returns the ratio of traces which could be parsed with-
out errors according to the execution semantics of a certain process model, fur-
ther on denoted as PM (range: [0, 1]). We also de�ne a “Fitting Single Trace
Measure”, which also returns the percentage of traces which could be correctly
parsed according to the execution semantics of a certain process model, with
the di�erence that, here, a model is mined for each single trace in the event log
which is subsequently used in the conformance evaluation. This metric is fur-
ther denoted as PM1 =

|{PM(σ)=1|σ∈L}|
|L|

(range: [0, 1]) and will be used as a basic
robustness check, to determine whether the evaluated discovery algorithms suc-
ceed in mining �tting process models for event logs containing a single trace, as
discussed in Subsection 5.3.2.

5.5 Experimental Evaluation

This section presents the results of a thorough evaluation experiment which was
performed in order to compare the performance, robustness and scalability of
Fodina with related heuristic process discovery algorithms.

178 5.5. EXPERIMENTAL EVALUATION

5.5.1 Experimental Setup

5.5.1.1 Input Logs

We have included 50 di�erent event logs to perform the experimental evaluation
(see Table 5.2). Logs “a10skip” to “l2lskip” are commonly used arti�cial event
logs [66] (type: “synthetic”). Logs “prAm6” to “prGm6” are also synthetic and
have been utilized in a recent benchmarking study by Munoz-Gama et al. [158].
Next, logs “permlXaY” (type: “permutations”) contain all permutations (with
repetition) of length X with number of activity types equal to Y (the log size is
hence YX). The best model for these logs is obviously a “�ower model” which al-
lows any sequence of activities, but these logs will be used to perform robustness
checks by iterating over and mining each trace separately. Logs “randpmsXdY”
are logs with size X generated from a randomly constructed process model8 with
depth Y (type: “random”). Logs “randsAlBmCaD” are also randomly generated,
but purely by choosing random activities out of a set with size D to construct A
traces with mean length B and standard deviation C, i.e. not simulated from a
(random) process model. Logs “realX” �nally encompass four real-life logs (type:
“real”).

Table 5.2 also provides an overview of the structural characteristics for the event
logs included in the experiment, depicting the number of traces |L|, number
of distinct traces |

⋃
(L)|, number of activities in the log |TL| together with the

amount of activities acting as starting or ending activities in a trace (most event
logs already include unique starting and ending activities) and, �nally, the mini-
mum, average and maximum trace length, together with the standard deviation.

5.5.1.2 Discovery Techniques

The following discovery algorithms are considered in the experimental setup:

α-algorithm [55, 58, 68, 160]: using the “Alpha Miner” (abbreviated asA in
the following tables) and “Alpha Miner++” (A++) plugins in ProM 5.2, and
using the “Alpha Miner” plugin in ProM 6 (A6). The native output process
model representation for this algorithm is a Petri net.

8Using the Process Log Generator [159], see: http://www.processmining.it/sw/
plg.

http://www.processmining.it/sw/plg
http://www.processmining.it/sw/plg

CHAPTER 5. FODINA 179

Table 5.2: Structural log characteristics for event logs included in experimental setup.
Remark that some tabulated means or trace lengths are higher then the con�gured values
for the “permutations” and “random” logs, as arti�cial start and end tasks were added
before and after each generated trace, thus increasing the length of each trace by 2.

Event Log Type |L| |
⋃
(L)| |AL| Min. Trace

Length
Avg. Trace

Length
Max. Trace

Length
Trace

Length
StdDev.

a10skip synthetic 300 6 12 8.00 8.88 10.00 0.72
a12 synthetic 300 5 14 7.00 8.31 9.00 0.81
a5 synthetic 300 13 7 6.00 6.78 12.00 1.19
a6nfc synthetic 300 3 8 6.00 6.80 7.00 0.40
a7 synthetic 300 14 9 6.00 6.74 7.00 0.44
a8 synthetic 300 4 10 5.00 6.01 8.00 1.42
betasimpli�ed synthetic 300 4 13 11.00 12.03 13.00 0.71
choice synthetic 300 16 12 8.00 8.00 8.00 0.00
driverslicense synthetic 2 2 9 7.00 7.00 7.00 0.00
driverslicenseloop synthetic 350 87 11 9.00 13.53 21.00 4.82
herbst�g3p4 synthetic 32 32 12 9.00 17.34 45.00 8.23
herbst�g5p19 synthetic 300 6 8 4.00 6.09 8.00 2.00
herbst�g6p18 synthetic 300 153 7 6.00 16.26 53.00 9.96
herbst�g6p31 synthetic 300 4 9 6.00 6.00 6.00 0.00
herbst�g6p36 synthetic 300 2 12 10.00 10.00 10.00 0.00
herbst�g6p38 synthetic 300 5 7 8.00 8.00 8.00 0.00
herbst�g6p41 synthetic 300 12 16 12.00 12.00 12.00 0.00
l2l synthetic 300 10 6 5.00 7.14 27.00 3.07
l2loptional synthetic 300 9 6 4.00 6.09 20.00 2.83
l2lskip synthetic 300 8 6 6.00 7.84 24.00 2.64
prAm6 synthetic 1200 1049 363 19.00 31.63 41.00 4.16
prBm6 synthetic 1200 1126 317 14.00 41.49 59.00 11.04
prCm6 synthetic 500 500 311 15.00 42.93 59.00 11.35
prDm6 synthetic 1200 1200 429 235.00 248.61 271.00 10.38
prEm6 synthetic 1200 1200 275 80.00 98.76 116.00 8.12
prFm6 synthetic 1200 1200 299 234.00 240.78 245.00 2.02
prGm6 synthetic 1200 1200 335 124.00 143.07 159.00 6.54
perml10a3 permutations 59049 59049 5 12.00 12.00 12.00 0.00
perml3a10 permutations 1000 1000 12 5.00 5.00 5.00 0.00
perml3a3 permutations 27 27 5 5.00 5.00 5.00 0.00
perml3a5 permutations 125 125 7 5.00 5.00 5.00 0.00
perml5a10 permutations 100000 100000 12 7.00 7.00 7.00 0.00
perml5a3 permutations 243 243 5 7.00 7.00 7.00 0.00
perml5a5 permutations 3125 3125 7 7.00 7.00 7.00 0.00
randpms10000d1 random 10000 2 8 8.00 8.00 8.00 0.00
randpms10000d2 random 10000 4724 16 10.00 33.45 275.00 27.73
randpms10000d3 random 10000 2906 38 10.00 21.96 141.00 15.06
randpms1000d1 random 1000 17 7 6.00 12.44 57.00 7.89
randpms1000d2 random 1000 12 14 14.00 14.00 14.00 0.00
randpms1000d3 random 1000 998 51 35.00 55.75 238.00 24.88
randpms100d1 random 100 3 9 7.00 7.00 7.00 0.00
randpms100d2 random 100 55 18 8.00 23.54 117.00 20.49
randpms100d3 random 100 54 20 18.00 21.21 45.00 4.42
rands10000l20m8a10 random 10000 10000 12 14.00 21.53 29.00 4.62
rands1000l10m4a5 random 1000 999 7 8.00 11.57 15.00 2.28
rands100l5m2a3 random 100 90 5 5.00 6.65 8.00 1.11
realdocman reallife 12391 1411 70 5.00 5.30 11.00 0.60
realhospital reallife 1143 981 626 3.00 133.49 1816.00 202.62
realincman reallife 24770 1174 18 3.00 5.01 29.00 1.94
realoutsourcing reallife 276599 3151 7 2.00 4.14 40.00 1.59

180 5.5. EXPERIMENTAL EVALUATION

Heuristics Miner [44, 57]: using the “Heuristics Miner” plugin in ProM 5.2
(HM5) and the “Mine for a Heuristics Net using Heuristics Miner” plugin
in ProM 6 (HM6); HM5L and HM6L describe the con�guration where the
dependency thresholds have been set to their lowest values. The native
output process model representation for this algorithm is a Heuristics net.

Flexible Heuristics Miner [86]: using the “Mine for a Causal Net using
Heuristics Miner” plugin in ProM 6 (FHM6); FHM6L describes the con-
�guration where the dependency thresholds have been set to their lowest
values. The native output process model representation for this algorithm
is a Causal net (internally represented in ProM as a “Flex net”).

Fodina: using our implemented ProM 6 plugin (F), also with a low depen-
dency threshold variant, FL. The other parameters were kept default (no
duplicate task mining and no binary con�ict resolution). The native output
process model representation for this algorithm is a Causal net.

Note that we do not include the “Tsinghua Alpha Miner” plugin provided by
ProM 5, as this algorithm derives disconnected, faulty nets when no distinct
start and complete event types are available. We also do not include Heuristics
Miner++ [85] and the Stream-aware Heuristics Miner [87] in our experimental
setup, as they operate mostly similar as Heuristics Miner in ProM 5.2 or only per-
form additional log pre-processing steps without modifying the discovery pro-
cedure. Finally, we do not include Fuzzy Miner [67, 157], due to the following
reasons. First, although the implemented Fuzzy Miner plugin displays a “log con-
formance” percentage, indicating which percentage of traces could be replayed
correctly by the shown Fuzzy model, it is hard to compare the result given by
this metric with other conformance checking metrics, and hence discovery al-
gorithms. Second, in Fuzzy Miner, users have the option to con�gure various
thresholds in order to show less or more edges or cluster activities together, im-
pacting the shown conformance metric. Third, choosing to show a model in-
cluding all behavior results in a Fuzzy model with a perfect conformance score.
Although this model is over�tting, Fuzzy Miner itself does not report a precision
related conformance metric. As it is not possible to convert a Fuzzy model to
another process representation (such as Petri nets), precision and generalization
assessments cannot be derived.

CHAPTER 5. FODINA 181

5.5.1.3 Model Conversion

Apart from working with the native output of each discovery algorithm, we also
apply various conversion plugins to convert a process model to other represen-
tations. Figure 5.8 provides an overview of the conversion possibilities currently
o�ered and implemented in ProM. This leads to the following possibilities re-
garding process model formats:

Petri net (use as discovered by α-algorithms).

Heuristics net (use as discovered by Heuristics Miner).

Flex net (use as discovered by Flexible Heuristics Miner).

Causal net (use as discovered by Fodina).

Causal net→ Petri net (using our conversion plugin).

Causal net→ Flex net (using our conversion plugin).

Causal net → Flex net → Petri net (using our conversion plugin followed
by a plugin by Adriansyah [109]).

Flex net→ Petri net (using a plugin by Adriansyah [109]).

Flex net→ Causal net (using our conversion plugin).

Flex net→ Causal net→ Petri net (using our conversion plugins).

Heuristics net → Petri net (using our conversion plugin, this ensures a
correct Petri net).

Heuristics net→ Petri net (using built in convertor [86], this results in an
incorrect Petri net for Heuristic nets mined with ProM 6).

Heuristics net→ Flex net (using a plugin by Ribeiro [86]).

Heuristics net → Flex net → Petri net (using a plugin by Ribeiro [86] fol-
lowed by a plugin by Adriansyah [109]).

Heuristics net → Flex net → Causal net (using a plugin by Ribeiro [86]
followed by our conversion plugin).

Heuristics net → Flex net → Causal net → Petri net (using a plugin by
Ribeiro [86] followed by our conversion plugins).

182 5.5. EXPERIMENTAL EVALUATION

H euristics net
(ProM 5)

H euristics net

Petri net

Petri net
(incorrect)

Flex net

Causal net

Figure 5.8: Conversion possibilities between process model representation formats.

Naturally, when required, we start each conversion from a “native” output and
do not allow conversion “loops”. Remark that a plugin is available in ProM 6 to
convert Petri nets to a Flexible model, but this conversion induces routing tasks
which make the resulting model unusable for Causal net related metrics. We
have not implemented a separate Petri net to Causal net convertor.

5.5.1.4 Conformance Checking Metrics

We use the following conformance checking metrics in the experimental setup
to evaluate the discovered process models by the included discovery algorithms:

For Causal nets: the ICS Fitness (ICS).

CHAPTER 5. FODINA 183

For Flex nets: the Average Alignment Based Trace Fitness (favga) [108–
111], using the alignment-based replaying plugin directly on the Flex net.
Note however that internally, the plugin converts the Flex net to a Petri
net to perform the actual alignment.

For Heuristic nets: the ICS Fitness [66] (ICS).

For Petri nets: the Average Alignment Based Trace Fitness (favga), One
Align Precision (a1p), Best Align Precision (ap), ETC Precision (etcP), Be-
havioral Recall (rB), Weighted Behavioral Precision (pwB), Weighted Be-
havioral Generalization (gwB), Number of Arcs, Places and Transitions (#a,
#p, #t).

For all native models: Fitting Single Trace Measure (PM1) using the dis-
covery algorithm’s native model’s execution semantics.

Since exploring all possible model conversion paths as mentioned above leads
to an explosions of model-log pairs to test, we limit ourselves to the following
model formats:

Causal nets: native and converted to Petri net using our conversion plugin.

Flex nets: native, converted to Petri net using a plugin by Adriansyah [109]
and converted to Causal nets using our conversion plugin.

Heuristic nets: native and converted to Petri net using a correct conversion
method (using our plugin where necessary; note thus that the benchmark
results will di�er from the results obtain by standard ProM 6 use).

Petri nets: native only.

5.5.2 Results

5.5.2.1 Benchmark Comparison

Table 5.3 lists the main results of our benchmarking experiment for the ICS Fit-
ness, Behavioral Recall and Weighted Behavioral Precision metrics, whereas Ta-
ble 5.4 list results for the simplicity metrics. Full experimental result tables are
appended at the end of this chapter. As can be seen from the results, Fodina

184 5.5. EXPERIMENTAL EVALUATION

is able to outperform other heuristic, dependency-based miners. A number of
important remarks should be kept in mind when interpreting the results. First,
a metric score below the maximum does not indicate Fodina’s inability to ob-
tain a �tting process model, as most con�guration parameters have been kept
default (apart from dependency thresholds). Second, a value of NA indicates a
timeout during the conformance checking procedure, and does not necessarily
signpost a discovery algorithm crash. Third, keep in mind the importance of �t-
ness and simplicity metrics above precision and generalization, as the latter two
can display a maximum score for process models which could not be mined by
the discovery algorithm (for example, a process model which is unable to replay
any trace will display a high precision score in most cases).

5.5.2.2 Robustness

Table 5.5 lists the results of Fodina for the Fitting Single Trace Measure metric.
Recall that this metric corresponds to the percentage of traces in the event log
for which a �tting model could be mined, for this trace in isolation.

This metric is included as a simple robustness check, but, surprisingly, we ob-
serve from the results that only Fodina is able to mine all single traces correctly.
Note that we relied on the most relaxed con�guration parameters regarding de-
pendency thresholds for each miner.

5.5.2.3 Scalability

The graphs in Figure 5.9 depict the results of a scalability experiment which was
performed to compare the performance in terms of speed of Fodina with Flexible
Heuristics Miner and Heuristics Miner (all with default settings). For both algo-
rithms, the ProM 6 implementation was chosen. The run times of the compared
algorithms were assessed over the following dimensions (each graph allows to
inspect a pair of dimensions). First, the total log size |L|, ranging from 10 to
10000 traces. Second, the distinct log size |

⋃
L| (always smaller than the total

log size), ranging from 5 to 1000 distinct traces. Third, the number of activi-
ties occurring in the log, |AL|, ranging from 2 to 25, and �nally, the length of
the traces contained in the log, |σ| with σ ∈ L, ranging from 3 to 50. All runs
were repeated twenty times. The results show that Fodina is able to outperform
other heuristic-based miners. Even although Fodina is theoretically bounded by

CHAPTER 5. FODINA 185

Table 5.3: Results of the Fodina conformance checking experiment. This table lists the
results for the ICS Fitness metric.

Algorithm HM5 HM6 FHM6 F HM5L HM6L FHM6L FL

Model hnet hnet cnet cnet hnet hnet cnet cnet
Event Log ICS

permutations\perml10a3.xes 0.996 0.996 0.959 0.996 0.996 0.894 1.000 1.000
permutations\perml3a10.xes -2.116 -2.116 0.969 0.998 -2.116 -2.116 1.000 1.000
permutations\perml3a3.xes -0.200 0.565 0.944 0.527 -0.200 0.772 1.000 1.000
permutations\perml3a5.xes -0.224 -0.224 0.952 0.990 -0.224 -0.224 1.000 1.000
permutations\perml5a10.xes -0.830 -0.830 0.960 0.929 -0.830 -0.830 1.000 1.000
permutations\perml5a3.xes 0.945 0.945 0.943 0.945 0.945 0.881 1.000 1.000
permutations\perml5a5.xes 0.859 0.859 0.944 0.986 0.859 0.854 1.000 1.000
random\randpms10000d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 0.875 1.000
random\randpms10000d2.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms10000d3.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms1000d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms1000d2.xes 1.000 1.000 1.000 1.000 1.000 0.741 0.929 1.000
random\randpms1000d3.xes 1.000 1.000 1.000 1.000 1.000 0.960 0.845 1.000
random\randpms100d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms100d2.xes 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000
random\randpms100d3.xes 1.000 1.000 1.000 1.000 1.000 0.979 0.929 1.000
random\rands10000l20m8a10.xes 0.964 0.964 0.999 0.992 0.964 -2.497 0.570 1.000
random\rands1000l10m4a5.xes 0.952 0.952 0.994 0.989 0.952 -0.392 0.744 1.000
random\rands100l5m2a3.xes 0.913 0.913 0.958 0.970 0.913 -0.233 0.994 1.000
reallife\realdocman.xes 0.662 0.669 0.986 0.967 0.662 0.399 0.998 0.996
reallife\realhospital.xes 0.768 0.606 0.979 0.969 0.768 0.480 0.999 0.999
reallife\realincman.xes 0.823 0.795 0.959 0.965 0.823 0.552 1.000 0.998
reallife\realoutsourcing.xes NA -2.844 0.500 0.999 NA -3.781 0.513 0.999
synthetic\a10skip.xes 1.000 1.000 1.000 1.000 1.000 0.945 1.000 1.000
synthetic\a12.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\a5.xes 1.000 1.000 1.000 1.000 1.000 0.937 0.999 1.000
synthetic\a6nfc.xes 1.000 1.000 1.000 0.990 1.000 1.000 0.998 0.990
synthetic\a7.xes 0.957 0.999 0.999 0.950 0.957 NA 0.998 0.994
synthetic\a8.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\betasimpli�ed.xes 1.000 1.000 1.000 1.000 1.000 0.961 1.000 1.000
synthetic\choice.xes 1.000 1.000 1.000 1.000 1.000 0.923 1.000 1.000
synthetic\driverslicense.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\driverslicenseloop.xes 1.000 1.000 1.000 1.000 1.000 0.866 1.000 1.000
synthetic\herbst�g3p4.xes 1.000 1.000 1.000 0.998 1.000 1.000 0.942 1.000
synthetic\herbst�g5p19.xes 1.000 1.000 1.000 1.000 1.000 0.671 0.999 1.000
synthetic\herbst�g6p18.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p31.xes 0.500 1.000 1.000 1.000 0.500 1.000 1.000 1.000
synthetic\herbst�g6p36.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p38.xes 0.552 0.552 0.875 0.963 0.552 -0.066 0.999 1.000
synthetic\herbst�g6p41.xes 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
synthetic\l2l.xes 0.848 1.000 1.000 1.000 0.848 1.000 1.000 1.000
synthetic\l2loptional.xes 0.911 1.000 1.000 1.000 0.911 0.917 1.000 1.000
synthetic\l2lskip.xes 0.882 1.000 1.000 1.000 0.882 1.000 1.000 1.000
synthetic\prAm6.xes 0.924 0.936 0.972 0.952 0.924 NA 0.990 0.999
synthetic\prBm6.xes 0.966 0.979 0.991 0.970 0.966 0.979 0.992 0.998
synthetic\prCm6.xes -0.245 -0.291 0.053 0.058 -0.245 -0.338 0.669 0.981
synthetic\prDm6.xes -0.187 -0.424 0.060 -0.124 -0.187 -0.487 0.527 1.000
synthetic\prEm6.xes 0.220 0.073 0.464 0.394 0.220 0.006 0.569 0.999
synthetic\prFm6.xes 0.324 0.326 0.509 0.467 0.324 0.315 0.450 1.000
synthetic\prGm6.xes 0.086 -0.155 0.371 0.308 0.086 -0.241 0.571 0.999

186 5.5. EXPERIMENTAL EVALUATION

Table 5.3 (continued): Results of the Fodina conformance checking experiment. This
table lists the results for the Behavioral Recall metric.

Algorithm A A++ A6 HM5 HM6 FHM6 F HM5L HM6L FHM6L FL

Model pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml
Event Log rB

permutations\perml10a3.xes 1.000 1.000 NA 0.996 0.996 0.699 0.996 0.996 0.917 1.000 1.000
permutations\perml3a10.xes 1.000 1.000 1.000 0.800 0.800 0.721 0.732 0.800 0.800 1.000 1.000
permutations\perml3a3.xes 1.000 1.000 1.000 0.600 0.667 0.815 0.689 0.600 0.844 1.000 1.000
permutations\perml3a5.xes 1.000 1.000 1.000 0.800 0.800 0.854 0.848 0.800 0.800 1.000 1.000
permutations\perml5a10.xes 1.000 1.000 1.000 NA NA NA NA NA NA NA NA
permutations\perml5a3.xes NA NA NA NA NA NA NA NA NA NA NA
permutations\perml5a5.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d1.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d2.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d3.xes NA NA NA 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
random\randpms1000d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms1000d2.xes 0.714 0.929 0.714 1.000 1.000 1.000 1.000 1.000 0.914 1.000 1.000
random\randpms1000d3.xes 0.725 0.771 0.725 1.000 1.000 1.000 1.000 1.000 0.962 0.996 1.000
random\randpms100d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms100d2.xes 0.841 0.884 0.841 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms100d3.xes 0.808 0.906 0.808 1.000 1.000 1.000 1.000 1.000 0.979 0.994 1.000
random\rands10000l20m8a10.xes 1.000 1.000 1.000 0.954 0.954 NA 0.911 0.954 NA NA 1.000
random\rands1000l10m4a5.xes 1.000 1.000 1.000 0.914 0.914 0.863 0.910 0.914 0.764 0.849 1.000
random\rands100l5m2a3.xes 1.000 1.000 1.000 0.917 0.917 0.881 0.868 0.917 0.669 0.916 1.000
reallife\realdocman.xes NA NA NA 0.666 0.673 NA 0.967 0.668 0.626 NA 0.991
reallife\realhospital.xes NA NA NA NA NA NA NA NA NA NA NA
reallife\realincman.xes 0.630 0.349 0.631 0.818 0.794 0.885 0.965 0.809 0.584 NA 0.998
reallife\realoutsourcing.xes 0.348 0.002 0.004 NA 0.008 0.827 0.977 NA 0.126 0.695 0.977
synthetic\a10skip.xes 0.946 0.946 0.946 1.000 1.000 1.000 1.000 1.000 0.946 1.000 1.000
synthetic\a12.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\a5.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.937 1.000 1.000
synthetic\a6nfc.xes 1.000 1.000 1.000 1.000 1.000 1.000 0.990 1.000 1.000 0.990 0.990
synthetic\a7.xes 1.000 1.000 1.000 0.957 1.000 0.981 0.940 0.957 NA 0.985 0.994
synthetic\a8.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\betasimpli�ed.xes 0.836 0.881 0.836 1.000 1.000 1.000 1.000 1.000 0.961 1.000 1.000
synthetic\choice.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.924 1.000 1.000
synthetic\driverslicense.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\driverslicenseloop.xes NA 0.991 0.917 1.000 1.000 1.000 1.000 1.000 0.869 1.000 1.000
synthetic\herbst�g3p4.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g5p19.xes 0.743 0.828 0.743 1.000 1.000 1.000 1.000 1.000 0.836 1.000 1.000
synthetic\herbst�g6p18.xes NA 0.795 0.734 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p31.xes 1.000 1.000 1.000 0.833 1.000 1.000 1.000 0.833 1.000 1.000 1.000
synthetic\herbst�g6p36.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p38.xes 1.000 1.000 1.000 0.875 0.875 1.000 0.963 0.875 0.750 1.000 1.000
synthetic\herbst�g6p41.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.984 1.000
synthetic\l2l.xes 1.000 1.000 1.000 0.850 1.000 1.000 1.000 0.850 1.000 1.000 1.000
synthetic\l2loptional.xes 1.000 1.000 1.000 0.911 1.000 1.000 1.000 0.911 0.918 1.000 1.000
synthetic\l2lskip.xes 0.872 1.000 0.872 0.883 1.000 1.000 1.000 0.883 1.000 1.000 1.000
synthetic\prAm6.xes 0.869 NA 0.869 0.923 0.936 0.939 0.941 0.923 NA NA 0.999
synthetic\prBm6.xes 0.982 0.983 0.982 0.968 0.979 0.968 0.956 0.968 0.979 0.954 0.998
synthetic\prCm6.xes NA NA NA 0.614 0.606 0.594 0.685 0.614 0.602 NA NA
synthetic\prDm6.xes 0.000 NA NA NA NA NA NA NA NA NA NA
synthetic\prEm6.xes NA NA 0.373 0.768 0.726 NA 0.765 0.766 0.703 NA NA
synthetic\prFm6.xes 0.000 NA NA NA 0.784 NA NA NA NA NA NA
synthetic\prGm6.xes 0.000 NA NA 0.733 NA NA NA 0.733 NA NA NA

CHAPTER 5. FODINA 187

Table 5.3 (continued): Results of the Fodina conformance checking experiment. This
table lists the results for the Weighted Behavioral Precision metric.

Algorithm A A++ A6 HM5 HM6 FHM6 F HM5L HM6L FHM6L FL

Model pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml
Event Log pwB
permutations\perml10a3.xes 0.609 0.764 NA 0.893 0.893 0.804 0.893 0.893 0.933 0.815 0.815
permutations\perml3a10.xes 0.211 0.395 0.211 0.407 0.407 0.526 0.577 0.407 0.407 0.429 0.429
permutations\perml3a3.xes 0.393 0.573 0.393 0.783 0.852 0.680 0.861 0.783 0.691 0.648 0.648
permutations\perml3a5.xes 0.313 0.500 0.313 0.559 0.559 0.625 0.619 0.559 0.559 0.556 0.556
permutations\perml5a10.xes 0.290 0.531 0.290 NA NA NA NA NA NA NA NA
permutations\perml5a3.xes NA NA NA NA NA NA NA NA NA NA NA
permutations\perml5a5.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d1.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d2.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d3.xes NA NA NA 0.929 0.929 NA 0.929 0.929 0.929 NA 0.791
random\randpms1000d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms1000d2.xes 1.000 0.764 1.000 0.830 0.830 0.830 0.830 0.830 0.608 0.613 0.753
random\randpms1000d3.xes 0.789 0.732 0.789 0.709 0.709 NA 0.709 0.709 0.350 NA 0.542
random\randpms100d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms100d2.xes 0.867 0.838 0.867 0.886 0.886 0.886 0.886 0.886 0.886 0.620 0.827
random\randpms100d3.xes 0.984 0.699 0.984 0.896 0.896 0.896 0.896 0.896 0.775 0.733 0.753
random\rands10000l20m8a10.xes 0.149 0.161 0.149 0.170 0.170 NA NA 0.170 NA NA NA
random\rands1000l10m4a5.xes 0.324 0.389 0.324 0.437 0.435 0.411 0.430 0.435 0.413 0.413 0.403
random\rands100l5m2a3.xes 0.439 0.597 0.439 0.712 0.712 0.674 0.696 0.712 0.681 0.663 0.656
reallife\realdocman.xes NA NA NA NA NA NA 0.391 NA NA NA NA
reallife\realhospital.xes NA NA NA NA NA NA NA NA NA NA NA
reallife\realincman.xes 0.232 0.559 0.161 0.382 0.399 NA 0.681 0.375 0.324 NA 0.479
reallife\realoutsourcing.xes 0.896 0.089 0.086 NA NA NA 0.921 NA NA NA NA
synthetic\a10skip.xes 0.946 0.946 0.946 1.000 1.000 1.000 1.000 1.000 0.946 0.789 0.900
synthetic\a12.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.803 0.853
synthetic\a5.xes 1.000 1.000 0.575 1.000 1.000 1.000 1.000 1.000 0.972 0.797 0.819
synthetic\a6nfc.xes 0.870 1.000 0.870 0.870 0.870 0.870 0.808 0.870 0.870 0.873 0.808
synthetic\a7.xes 1.000 1.000 1.000 0.967 0.804 0.826 0.944 0.967 NA 0.712 0.699
synthetic\a8.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.846 0.920
synthetic\betasimpli�ed.xes 0.683 0.601 0.683 0.850 0.850 0.850 0.850 0.850 0.805 0.850 0.850
synthetic\choice.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.801 1.000 1.000
synthetic\driverslicense.xes 0.903 1.000 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903
synthetic\driverslicenseloop.xes NA 0.921 0.899 0.893 0.893 0.893 0.893 0.893 0.647 0.593 0.691
synthetic\herbst�g3p4.xes 0.992 0.992 0.992 0.992 0.992 0.992 0.983 0.992 0.992 0.842 0.820
synthetic\herbst�g5p19.xes 0.873 0.885 0.873 0.902 0.902 0.902 0.902 0.902 0.886 0.802 0.776
synthetic\herbst�g6p18.xes NA 0.773 0.466 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971
synthetic\herbst�g6p31.xes 0.558 1.000 0.558 0.513 0.558 0.558 0.558 0.513 0.558 0.558 0.558
synthetic\herbst�g6p36.xes 0.976 1.000 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976
synthetic\herbst�g6p38.xes 0.428 0.510 0.428 0.836 0.836 0.626 0.578 0.836 NA 0.719 0.598
synthetic\herbst�g6p41.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.613 0.741
synthetic\l2l.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 NA 1.000 1.000 1.000
synthetic\l2loptional.xes 1.000 1.000 1.000 0.873 1.000 1.000 1.000 0.873 0.918 1.000 1.000
synthetic\l2lskip.xes 1.000 0.887 1.000 0.829 1.000 1.000 1.000 0.829 1.000 1.000 1.000
synthetic\prAm6.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\prBm6.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\prCm6.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\prDm6.xes 1.000 NA NA NA NA NA NA NA NA NA NA
synthetic\prEm6.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\prFm6.xes 1.000 NA NA NA NA NA NA NA NA NA NA
synthetic\prGm6.xes 1.000 NA NA NA NA NA NA NA NA NA NA

188 5.5. EXPERIMENTAL EVALUATION

Ta
bl

e
5.4

:R
es

ul
ts

of
th

e
Fo

di
na

co
nf

or
m

an
ce

ch
ec

ki
ng

ex
pe

rim
en

tf
or

th
e

sim
pl

ic
ity

m
et

ric
s(

nu
m

be
ro

fa
rc

s,
pl

ac
es

an
d

tra
ns

iti
on

sr
es

pe
ct

iv
el

y)
.

A
lg

or
it

hm
A

A
+

+
A
6

H
M

5
H
M

6
F
H
M

6
F

H
M

5 L
H
M

6 L
F
H
M

6 L
F
L

M
od

el
pn

ml
pn

ml
pn

ml
pn

ml
pn

ml
pn

ml
pn

ml
pn

ml
pn

ml
pn

ml
pn

ml
Ev

en
t

Lo
g

#a
/#
p

/#
t

pe
rm

ut
at

io
ns

\p
er

m
l1

0a
3.x

es
2

/2
/5

10
/3

/5
N

A
/N

A
/N

A
26

/1
1

/1
1

26
/1

1
/1

1
72

/1
9

/3
1

26
/1

1
/1

1
26

/1
1

/1
1

62
/1

9
/1

7
70

/2
5

/3
5

40
/1

0
/2

0
pe

rm
ut

at
io

ns
\p

er
m

l3
a1

0.x
es

2
/2

/1
2

24
/3

/1
2

2
/2

/1
2

82
/3

2
/3

2
82

/3
2

/3
2

13
74

/5
4

/4
02

12
94

/3
4

/3
62

82
/3

2
/3

2
82

/3
2

/3
2

50
4

/1
44

/2
52

26
4

/2
4

/1
32

pe
rm

ut
at

io
ns

\p
er

m
l3

a3
.x

es
2

/2
/5

10
/3

/5
2

/2
/5

10
/4

/5
14

/8
/5

72
/1

9
/3

1
36

/1
0

/1
3

10
/4

/5
39

/1
4

/1
3

70
/2

5
/3

5
40

/1
0

/2
0

pe
rm

ut
at

io
ns

\p
er

m
l3

a5
.x

es
2

/2
/7

14
/3

/7
2

/2
/7

42
/1

7
/1

7
42

/1
7

/1
7

21
4

/2
9

/7
7

17
4

/1
9

/5
7

42
/1

7
/1

7
42

/1
7

/1
7

15
4

/4
9

/7
7

84
/1

4
/4

2
pe

rm
ut

at
io

ns
\p

er
m

l5
a1

0.x
es

2
/2

/1
2

24
/3

/1
2

2
/2

/1
2

N
A

/N
A

/3
2

N
A

/N
A

/3
2

N
A

/N
A

/1
32

6
N

A
/N

A
/4

52
N

A
/N

A
/3

2
N

A
/N

A
/3

2
N

A
/N

A
/2

52
N

A
/N

A
/1

32
pe

rm
ut

at
io

ns
\p

er
m

l5
a3

.x
es

N
A

/N
A

/5
N

A
/N

A
/5

N
A

/N
A

/5
N

A
/N

A
/1

1
N

A
/N

A
/1

1
N

A
/N

A
/3

1
N

A
/N

A
/1

1
N

A
/N

A
/1

1
N

A
/N

A
/1

7
N

A
/N

A
/3

5
N

A
/N

A
/2

0
pe

rm
ut

at
io

ns
\p

er
m

l5
a5

.x
es

N
A

/N
A

/7
N

A
/N

A
/7

N
A

/N
A

/7
N

A
/N

A
/1

7
N

A
/N

A
/1

7
N

A
/N

A
/8

9
N

A
/N

A
/4

9
N

A
/N

A
/1

7
N

A
/N

A
/3

3
N

A
/N

A
/7

7
N

A
/N

A
/4

2
ra

nd
om

\ra
nd

pm
s1

00
00

d1
.x

es
N

A
/N

A
/8

N
A

/N
A

/8
N

A
/N

A
/8

N
A

/N
A

/8
N

A
/N

A
/8

N
A

/N
A

/2
2

N
A

/N
A

/8
N

A
/N

A
/8

N
A

/N
A

/8
N

A
/N

A
/2

6
N

A
/N

A
/1

4
ra

nd
om

\ra
nd

pm
s1

00
00

d2
.x

es
N

A
/N

A
/0

N
A

/N
A

/1
6

N
A

/N
A

/1
6

N
A

/N
A

/1
8

N
A

/N
A

/1
8

N
A

/N
A

/5
6

N
A

/N
A

/1
8

N
A

/N
A

/1
8

N
A

/N
A

/1
8

N
A

/N
A

/5
6

N
A

/N
A

/1
8

ra
nd

om
\ra

nd
pm

s1
00

00
d3

.x
es

N
A

/N
A

/3
8

N
A

/N
A

/3
8

N
A

/N
A

/3
8

96
/4

0
/4

3
96

/4
0

/4
3

27
0

/1
27

/1
30

96
/4

0
/4

3
96

/4
0

/4
3

96
/4

0
/4

3
34

6
/1

34
/1

62
14

6
/4

6
/7

3
ra

nd
om

\ra
nd

pm
s1

00
0d

1.x
es

14
/7

/7
14

/7
/7

14
/7

/7
14

/7
/7

14
/7

/7
42

/2
1

/2
1

14
/7

/7
14

/7
/7

14
/7

/7
42

/2
1

/2
1

14
/7

/7
ra

nd
om

\ra
nd

pm
s1

00
0d

2.x
es

74
/2

5
/1

4
33

/1
4

/1
4

78
/2

6
/1

4
54

/2
0

/2
6

54
/2

0
/2

6
11

4
/5

0
/5

6
54

/2
0

/2
6

54
/2

0
/2

6
30

/1
5

/1
4

12
2

/5
1

/6
0

64
/2

2
/3

2
ra

nd
om

\ra
nd

pm
s1

00
0d

3.x
es

22
8

/8
1

/5
1

20
1

/6
7

/5
1

23
6

/8
3

/5
1

18
8

/7
1

/8
3

18
8

/7
1

/8
3

42
0

/1
87

/1
99

18
8

/7
1

/8
3

18
8

/7
1

/8
3

13
0

/6
0

/5
4

58
0

/2
02

/2
67

29
8

/8
5

/1
49

ra
nd

om
\ra

nd
pm

s1
00

d1
.x

es
18

/8
/9

18
/8

/9
18

/8
/9

18
/8

/9
18

/8
/9

58
/2

8
/2

9
18

/8
/9

18
/8

/9
18

/8
/9

58
/2

8
/2

9
18

/8
/9

ra
nd

om
\ra

nd
pm

s1
00

d2
.x

es
46

/1
9

/1
8

44
/1

8
/1

8
46

/1
9

/1
8

46
/1

9
/2

2
46

/1
9

/2
2

12
6

/5
9

/6
2

46
/1

9
/2

2
46

/1
9

/2
2

46
/1

9
/2

2
13

4
/6

0
/6

6
56

/2
1

/2
8

ra
nd

om
\ra

nd
pm

s1
00

d3
.x

es
56

/2
4

/2
0

61
/2

3
/2

0
56

/2
4

/2
0

56
/2

4
/2

6
56

/2
4

/2
6

14
0

/6
6

/6
8

56
/2

4
/2

6
56

/2
4

/2
6

44
/2

1
/2

0
17

4
/6

9
/8

2
76

/2
6

/3
8

ra
nd

om
\ra

nd
s1

00
00

l2
0m

8a
10

.x
es

2
/2

/1
2

24
/3

/1
2

2
/2

/1
2

82
/3

2
/3

2
82

/3
2

/3
2

58
60

/5
4

/8
16

10
96

/3
4

/1
44

82
/3

2
/3

2
71

2
/1

94
/1

22
40

41
/9

9
/1

12
5

26
4

/2
4

/1
32

ra
nd

om
\ra

nd
s1

00
0l

10
m

4a
5.x

es
2

/2
/7

14
/3

/7
N

A
/2

/7
42

/1
7

/1
7

42
/1

7
/1

7
22

0
/2

9
/6

7
96

/1
9

/2
9

42
/1

7
/1

7
16

9
/4

9
/3

7
31

8
/4

0
/1

21
84

/1
4

/4
2

ra
nd

om
\ra

nd
s1

00
l5

m
2a

3.x
es

2
/2

/5
10

/3
/5

2
/2

/5
26

/1
1

/1
1

26
/1

1
/1

1
72

/1
9

/3
1

42
/1

3
/1

7
26

/1
1

/1
1

57
/1

9
/1

7
92

/2
3

/4
1

40
/1

0
/2

0
re

al
lif

e\
re

al
do

cm
an

.x
es

N
A

/N
A

/N
A

N
A

/N
A

/N
A

N
A

/N
A

/N
A

80
9

/1
08

/2
05

62
1

/6
2

/1
29

N
A

/N
A

/N
A

42
4

/6
9

/2
08

80
9

/1
08

/2
05

19
40

/3
22

/4
32

N
A

/N
A

/N
A

18
41

/1
44

/9
19

re
al

lif
e\

re
al

ho
sp

ita
l.x

es
N

A
/N

A
/N

A
N

A
/N

A
/N

A
N

A
/N

A
/N

A
32

26
/4

42
/1

27
8

34
58

/4
66

/1
26

6
22

03
3

/3
09

3
/8

13
7

32
40

/5
04

/1
57

5
32

26
/4

42
/1

27
8

42
95

/7
01

/1
42

5
N

A
/N

A
/N

A
89

99
/8

68
/4

49
9

re
al

lif
e\

re
al

in
cm

an
.x

es
78

/2
0

/1
8

27
3

/5
0

/1
8

70
/2

0
/1

8
22

9
/5

0
/8

0
20

8
/5

5
/6

8
66

9
/1

02
/2

70
18

1
/3

2
/9

0
22

9
/5

0
/8

0
31

4
/8

2
/8

3
N

A
/N

A
/N

A
31

0
/3

4
/1

55
re

al
lif

e\
re

al
ou

ts
ou

rc
in

g.
xe

s
22

/1
0

/7
25

/8
/7

55
/1

0
/7

N
A

/N
A

/N
A

98
/3

3
/2

8
16

0
/4

3
/7

2
64

/1
4

/3
2

N
A

/N
A

/N
A

15
4

/4
6

/4
0

38
3

/4
0

/1
34

78
/1

4
/3

9
sy

nt
he

tic
\a

10
sk

ip
.x

es
30

/1
4

/1
2

30
/1

4
/1

2
30

/1
4

/1
2

30
/1

3
/1

3
30

/1
3

/1
3

78
/3

8
/3

8
32

/1
5

/1
5

30
/1

3
/1

3
28

/1
3

/1
2

86
/3

9
/4

2
38

/1
5

/1
9

sy
nt

he
tic

\a
12

.x
es

30
/1

4
/1

4
30

/1
4

/1
4

30
/1

4
/1

4
30

/1
4

/1
4

30
/1

4
/1

4
90

/4
4

/4
4

30
/1

4
/1

4
30

/1
4

/1
4

30
/1

4
/1

4
10

3
/4

6
/5

0
46

/1
7

/2
3

sy
nt

he
tic

\a
5.x

es
18

/8
/7

18
/8

/7
N

A
/8

/7
31

/1
3

/1
3

31
/1

3
/1

3
51

/2
4

/2
4

25
/1

1
/1

1
31

/1
3

/1
3

25
/1

1
/1

1
61

/2
5

/2
9

34
/1

2
/1

7
sy

nt
he

tic
\a

6n
fc

.x
es

18
/9

/8
19

/9
/8

18
/9

/8
20

/1
0

/9
20

/1
0

/9
52

/2
5

/2
5

24
/1

0
/1

2
20

/1
0

/9
20

/1
0

/9
60

/2
6

/2
9

24
/1

0
/1

2
sy

nt
he

tic
\a

7.x
es

24
/1

0
/9

24
/1

0
/9

24
/1

0
/9

24
/9

/1
0

22
/9

/9
73

/3
0

/3
2

27
/1

1
/1

2
24

/9
/1

0
N

A
/N

A
/N

A
13

3
/3

6
/5

6
54

/1
5

/2
7

sy
nt

he
tic

\a
8.x

es
22

/1
0

/1
0

22
/1

0
/1

0
22

/1
0

/1
0

22
/1

0
/1

0
22

/1
0

/1
0

66
/3

2
/3

2
22

/1
0

/1
0

22
/1

0
/1

0
22

/1
0

/1
0

74
/3

3
/3

6
32

/1
2

/1
6

sy
nt

he
tic

\b
et

as
im

pl
i�

ed
.x

es
34

/1
5

/1
3

45
/1

8
/1

3
34

/1
5

/1
3

42
/1

7
/2

1
42

/1
7

/2
1

94
/4

3
/4

7
42

/1
7

/2
1

42
/1

7
/2

1
38

/1
6

/1
9

94
/4

3
/4

7
42

/1
7

/2
1

sy
nt

he
tic

\c
ho

ic
e.x

es
24

/9
/1

2
24

/9
/1

2
24

/9
/1

2
48

/1
8

/2
4

48
/1

8
/2

4
96

/4
2

/4
8

48
/1

8
/2

4
48

/1
8

/2
4

30
/1

2
/1

5
96

/4
2

/4
8

48
/1

8
/2

4
sy

nt
he

tic
\d

riv
er

sli
ce

ns
e.x

es
18

/8
/9

22
/1

0
/9

18
/8

/9
18

/8
/9

18
/8

/9
58

/2
8

/2
9

18
/8

/9
18

/8
/9

18
/8

/9
58

/N
A

/N
A

18
/8

/9
sy

nt
he

tic
\d

riv
er

sli
ce

ns
el

oo
p.

xe
s

N
A

/N
A

/N
A

34
/1

3
/1

1
31

/1
2

/1
1

38
/1

5
/1

7
38

/1
5

/1
7

86
/3

9
/4

1
38

/1
5

/1
7

38
/1

5
/1

7
26

/1
2

/1
2

98
/4

0
/4

7
46

/1
5

/2
3

sy
nt

he
tic

\h
er

bs
t�

g3
p4

.x
es

26
/1

2
/1

2
26

/1
2

/1
2

26
/1

2
/1

2
26

/1
2

/1
2

26
/1

2
/1

2
79

/3
8

/3
8

28
/1

3
/1

3
26

/1
2

/1
2

26
/1

2
/1

2
10

3
/4

2
/5

0
50

/1
7

/2
5

sy
nt

he
tic

\h
er

bs
t�

g5
p1

9.x
es

24
/1

0
/8

22
/9

/8
24

/1
0

/8
26

/1
1

/1
2

26
/1

1
/1

2
58

/2
7

/2
8

26
/1

1
/1

2
26

/1
1

/1
2

21
/1

0
/1

0
66

/2
8

/3
2

34
/1

2
/1

7
sy

nt
he

tic
\h

er
bs

t�
g6

p1
8.x

es
N

A
/N

A
/N

A
15

/6
/7

13
/6

/7
20

/8
/1

0
20

/8
/1

0
50

/2
3

/2
5

20
/8

/1
0

20
/8

/1
0

20
/8

/1
0

50
/2

3
/2

5
20

/8
/1

0
sy

nt
he

tic
\h

er
bs

t�
g6

p3
1.x

es
18

/5
/9

29
/8

/9
18

/5
/9

23
/7

/9
18

/5
/9

70
/3

1
/3

5
18

/5
/9

23
/7

/9
18

/5
/9

70
/3

1
/3

5
18

/5
/9

sy
nt

he
tic

\h
er

bs
t�

g6
p3

6.x
es

24
/1

1
/1

2
28

/1
3

/1
2

24
/1

1
/1

2
24

/1
1

/1
2

24
/1

1
/1

2
76

/3
7

/3
8

24
/1

1
/1

2
24

/1
1

/1
2

24
/1

1
/1

2
76

/3
7

/3
8

24
/1

1
/1

2
sy

nt
he

tic
\h

er
bs

t�
g6

p3
8.x

es
10

/6
/7

14
/7

/7
10

/6
/7

26
/1

1
/9

26
/1

1
/9

58
/2

3
/2

7
28

/1
0

/1
4

26
/1

1
/9

35
/1

4
/1

2
64

/2
4

/2
9

36
/1

2
/1

8
sy

nt
he

tic
\h

er
bs

t�
g6

p4
1.x

es
38

/1
9

/1
6

38
/1

9
/1

6
38

/1
9

/1
6

38
/1

9
/1

6
38

/1
9

/1
6

10
2

/5
1

/4
8

38
/1

9
/1

6
38

/1
9

/1
6

38
/1

9
/1

6
13

4
/5

5
/6

4
74

/2
6

/3
7

sy
nt

he
tic

\l2
l.x

es
12

/7
/6

12
/6

/6
14

/6
/6

16
/8

/6
12

/6
/6

36
/1

8
/1

8
12

/6
/6

16
/8

/6
12

/6
/6

36
/1

8
/1

8
12

/6
/6

sy
nt

he
tic

\l2
lo

pt
io

na
l.x

es
12

/6
/6

12
/6

/6
12

/6
/6

22
/1

0
/1

0
20

/9
/1

0
40

/1
9

/2
0

20
/9

/1
0

22
/1

0
/1

0
14

/7
/7

40
/1

9
/2

0
20

/9
/1

0
sy

nt
he

tic
\l2

lsk
ip

.x
es

14
/7

/6
12

/6
/6

14
/7

/6
16

/8
/7

14
/7

/7
36

/1
8

/1
8

14
/7

/7
16

/8
/7

14
/7

/7
36

/1
8

/1
8

14
/7

/7
sy

nt
he

tic
\p

rA
m

6.x
es

39
20

/9
86

/3
63

N
A

/N
A

/N
A

39
37

/9
90

/3
63

94
4

/3
36

/4
16

95
1

/3
69

/3
99

41
79

/1
40

4
/1

84
2

12
22

/4
29

/5
26

94
4

/3
36

/4
16

N
A

/N
A

/N
A

11
57

9
/2

33
6

/4
81

8
44

70
/5

53
/2

23
5

sy
nt

he
tic

\p
rB

m
6.x

es
95

1
/3

96
/3

17
10

26
/4

02
/3

17
95

1
/3

96
/3

17
79

4
/3

09
/3

36
83

1
/3

58
/3

31
29

27
/1

12
2

/1
29

1
10

30
/3

93
/4

17
79

4
/3

09
/3

36
84

4
/3

55
/3

39
64

08
/1

45
0

/2
61

5
23

94
/4

70
/1

19
7

sy
nt

he
tic

\p
rC

m
6.x

es
N

A
/N

A
/N

A
N

A
/N

A
/N

A
N

A
/N

A
/N

A
74

0
/2

38
/3

60
78

1
/2

75
/3

50
53

68
/1

32
8

/2
26

0
12

10
/4

08
/5

42
74

0
/2

38
/3

60
12

70
/3

90
/5

30
N

A
/N

A
/N

A
N

A
/N

A
/N

A
sy

nt
he

tic
\p

rD
m

6.x
es

0
/0

/0
N

A
/N

A
/N

A
N

A
/N

A
/N

A
12

90
/4

50
/5

56
13

64
/5

52
/5

16
13

16
5

/1
95

0
/4

71
9

26
97

/7
30

/1
11

7
12

90
/4

50
/5

56
19

21
/7

10
/6

86
N

A
/N

A
/N

A
N

A
/N

A
/N

A
sy

nt
he

tic
\p

rE
m

6.x
es

N
A

/N
A

/N
A

N
A

/N
A

/N
A

39
49

/1
13

7
/2

75
76

1
/2

93
/3

10
74

7
/3

22
/2

88
45

01
/1

07
2

/1
77

0
14

56
/4

64
/6

03
76

1
/2

93
/3

10
89

6
/3

70
/3

27
N

A
/N

A
/N

A
13

04
4

/4
89

/6
52

2
sy

nt
he

tic
\p

rF
m

6.x
es

0
/0

/0
N

A
/N

A
/N

A
80

18
/2

51
0

/2
99

N
A

/3
67

/3
48

89
9

/4
06

/3
30

57
61

/1
22

2
/2

20
4

25
41

/7
13

/1
02

0
89

2
/3

67
/3

48
10

96
/4

76
/3

79
N

A
/N

A
/N

A
N

A
/N

A
/N

A
sy

nt
he

tic
\p

rG
m

6.x
es

0
/0

/0
N

A
/N

A
/N

A
40

02
1

/7
58

9
/3

35
10

46
/3

59
/4

40
10

61
/4

23
/3

98
76

20
/1

47
3

/2
89

1
22

05
/5

71
/9

08
10

46
/3

59
/4

40
14

16
/5

29
/5

16
N

A
/N

A
/N

A
N

A
/N

A
/N

A

CHAPTER 5. FODINA 189

Table 5.5: Results of the Fodina conformance checking experiment for the Fitting Single
Trace Measure metric.

Algorithm A A++ A6 HM5L HM6L FHM6L FL

Model pnml pnml pnml hnet hnet flex cnet
Event Log PM1

permutations\perml10a3.xes 0.625 0.489 0.940 0.360 0.180 0.430 1.000
permutations\perml3a10.xes 0.981 0.977 1.000 0.820 1.000 1.000 1.000
permutations\perml3a3.xes 0.926 0.852 1.000 0.560 1.000 1.000 1.000
permutations\perml3a5.xes 0.928 0.928 1.000 0.670 1.000 1.000 1.000
permutations\perml5a10.xes 0.902 0.909 0.985 0.690 0.970 1.000 1.000
permutations\perml5a3.xes 0.675 0.691 0.940 0.530 0.760 0.900 1.000
permutations\perml5a5.xes 0.782 0.784 0.959 0.540 0.890 0.970 1.000
random\randpms10000d1.xes 0.442 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms10000d2.xes 0.477 0.305 0.965 0.900 0.910 1.000 1.000
random\randpms10000d3.xes 0.705 0.533 0.983 0.840 0.910 0.980 1.000
random\randpms1000d1.xes 0.846 0.669 1.000 1.000 1.000 1.000 1.000
random\randpms1000d2.xes 0.849 0.763 1.000 1.000 1.000 1.000 1.000
random\randpms1000d3.xes 0.612 0.514 0.974 0.640 0.810 0.840 1.000
random\randpms100d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms100d2.xes 0.450 0.490 0.948 0.840 0.900 0.980 1.000
random\randpms100d3.xes 0.930 0.810 1.000 1.000 1.000 1.000 1.000
random\rands10000l20m8a10.xes 0.055 0.029 0.781 0.040 0.240 0.710 1.000
random\rands1000l10m4a5.xes 0.347 0.267 0.885 0.230 0.430 0.750 1.000
random\rands100l5m2a3.xes 0.770 0.780 0.966 0.600 0.770 0.890 1.000
reallife\realdocman.xes 0.846 0.976 0.999 1.000 1.000 1.000 1.000
reallife\realhospital.xes 0.273 0.360 0.893 0.340 0.550 0.740 1.000
reallife\realincman.xes 0.800 0.951 0.995 1.000 1.000 1.000 1.000
reallife\realoutsourcing.xes 0.631 0.924 0.970 0.920 0.930 0.930 1.000
synthetic\a10skip.xes 0.467 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\a12.xes 0.523 0.753 1.000 1.000 1.000 1.000 1.000
synthetic\a5.xes 0.657 0.883 1.000 0.900 1.000 1.000 1.000
synthetic\a6nfc.xes 0.800 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\a7.xes 0.927 0.903 1.000 1.000 1.000 1.000 1.000
synthetic\a8.xes 0.813 0.643 1.000 1.000 1.000 1.000 1.000
synthetic\betasimpli�ed.xes 1.000 0.493 1.000 1.000 1.000 1.000 1.000
synthetic\choice.xes 0.950 0.873 1.000 0.920 1.000 1.000 1.000
synthetic\driverslicense.xes 0.500 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\driverslicenseloop.xes 0.483 0.654 0.953 0.670 0.810 0.780 1.000
synthetic\herbst�g3p4.xes 0.906 0.781 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g5p19.xes 0.883 0.767 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p18.xes 0.283 0.517 0.878 0.750 1.000 0.860 1.000
synthetic\herbst�g6p31.xes 0.293 0.770 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p36.xes 0.450 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p38.xes 0.850 0.857 1.000 0.560 1.000 1.000 1.000
synthetic\herbst�g6p41.xes 0.750 0.750 1.000 1.000 1.000 1.000 1.000
synthetic\l2l.xes 1.000 1.000 1.000 0.750 1.000 1.000 1.000
synthetic\l2loptional.xes 0.237 0.997 0.972 1.000 1.000 1.000 1.000
synthetic\l2lskip.xes 0.490 1.000 0.944 1.000 1.000 1.000 1.000
synthetic\prAm6.xes 0.959 0.965 1.000 1.000 1.000 1.000 1.000
synthetic\prBm6.xes 0.941 0.959 1.000 1.000 1.000 1.000 1.000
synthetic\prCm6.xes 0.954 0.976 1.000 1.000 1.000 1.000 1.000
synthetic\prDm6.xes 0.968 0.981 1.000 1.000 1.000 1.000 1.000
synthetic\prEm6.xes 0.962 0.971 1.000 0.990 1.000 1.000 1.000
synthetic\prFm6.xes 0.963 0.976 1.000 1.000 1.000 1.000 1.000
synthetic\prGm6.xes 0.968 0.970 1.000 1.000 1.000 1.000 1.000

190 5.6. APPLICATION: BIDIMENSIONAL PROCESS DISCOVERY WITH BPMN

0 1000 2000 3000 4000 5000

0
1

2
3

4
Run times by varying Log Size

(series varying by: Distinct Log Size)

Log Size

T
im

e
(s

ec
o

n
d

s)

1050100200300400500

1000

10

501002003004005001000

10

50
100200300
400
500
1000Fodina

Heuristics Miner

Flexible Heuristics Miner

Figure 5.9: Scalability results for Fodina compared to (Flexible) Heuristics Miner (ProM
6). The e�ects of total log size, distinct log size, number of activities and trace length were
investigated. The results show that Fodina performs faster than comparable technique.
This �gure shows run times as depending on log size and distinct log size.

similar complexity characteristics as other heuristic miners (non-linearity in the
number of activities), the concurrent discovery of semantic split/join information
greatly speeds up the discovery procedure. In addition, the other tested miners
su�er from implementation drawbacks, most notably stemming from the fact
that multiple passes over the event log are performed.

This experimental section has illustrated the quality, robustness and scalability
of our proposed technique. The next section shows how Fodina can be com-
bined with other discovery perspectives towards the discovery of bidimensional
process models.

5.6 Application: Bidimensional Process Discovery with
BPMN

In this section, we explore the possibilities of applying Fodina towards so-called
“bidimensional process discovery”, where the perspective of control-�ow is com-

CHAPTER 5. FODINA 191

1000 2000 3000 4000 5000

1
2

3
4

Run times by varying Log Size

(series varying by: Number of Activities)

Log Size

T
im

e
(s

ec
o

n
d

s)

3510152025
35

10
15
20
25

3

5

10

15

20

25

Fodina

Heuristics Miner

Flexible Heuristics Miner

Figure 5.9 (continued): This �gure shows run times as depending on log size and number
of activities.

5 10 15 20 25

0
1

2
3

4

Run times by varying Trace Length

(series varying by: Number of Activities)

Trace Length

T
im

e
(s

ec
o

n
d

s)

3510152025
35

10
15
20
25

3

5

10

15

20

25

Fodina

Heuristics Miner

Flexible Heuristics Miner

Figure 5.9 (continued): This �gure shows run times as depending on trace length and
number of activities.

192 5.6. APPLICATION: BIDIMENSIONAL PROCESS DISCOVERY WITH BPMN

Figure 5.9 (continued): Three dimensional aggregated summary plot comparing Fodina
(lower plane), Heuristics Miner (middle plane) and Flexible Heuristics Miner (top plane).

CHAPTER 5. FODINA 193

bined with other context, such as—as will be developed here—the organizational
context of a process. In addition, we will depict the discovered process model in
the form of a BPMN model. As we have seen, popular output formats for dis-
covered models include: Petri nets [38], Heuristic nets [44], Causal nets [43] and
EPC’s [146]. However, one particular process modeling standard which has been
somewhat overlooked in the process mining community is the Business Process
Model and Notation (BPMN) standard [161]. This is peculiar, as the majority of
educators and researchers have adopted BPMN as the language of choice when
working with business processes. The reason for this stems mainly from the fact
that BPMN has, for a long time, lacked a formal de�nition of its execution se-
mantics. The initial speci�cations [162] de�ned behavioral semantics using the
notion of token �ow, similar to Petri nets and UML activity diagrams, but solely
described the execution semantics in narrative form. Although researchers have
de�ned formalized de�nitions, ranging from attempts to de�ne a formal seman-
tics for a subset of BPMN [163, 164] to more complete approaches [163, 165, 166],
the fact remains that both BPMN’s many visual objects and its weak semantic for-
malization have caused scholars to develop process discovery techniques based
on more formalized modeling approaches.

Nevertheless, given BPMN’s wide dissemination, we argue that the availability
of a native BPMN-based process discovery technique could be of great bene�t
within process identi�cation, optimization and re-engineering e�orts. Therefore,
this section will opt to represent discovered control-�ow aspects using BPMN
constructs, with Fodina as the underlying miner. We select a subset of con-
structs, both because discovering some constructs is near-impossible using only
historically recorded process execution “traces”, as well as because scholars have
indicated that only a small subset of BPMN’s constructs are used by the ma-
jority of practitioners [167]. However, our proposed approach is unique in the
sense that it combines the control-�ow perspective with an organizational di-
mension by discovering swim lanes that represent organizational roles in the
business process. In addition, our technique provides intuitive and easy-to-use
abstraction/speci�cation functionality which makes it applicable to event logs
with various complexity levels, provides instant feedback about the conformance
between the input log and the resulting model based on a dedicated �tness met-
ric, is robust to noise, and can easily be integrated with modeling and other BPM
tools by exporting the discovered model.

194 5.6. APPLICATION: BIDIMENSIONAL PROCESS DISCOVERY WITH BPMN

5.6.1 Rationale

5.6.1.1 Relevance for Practitioners

BPMN is considered as the de facto standard for process modeling [168] and is
widely adopted by both business and IT communities [169]. Practitioners from
both communities use the notation standard mainly for documenting, improv-
ing, simulating and implementing business processes [170]. While the adoption
of BPMN for the purpose of process modeling has been successful, the adoption
of process mining as the most valuable tool for business process improvement
initiatives is somehow lagging. It is argued that a core factor contributing to
this e�ect consists of a lack of deep technical understanding from typical busi-
ness practitioners involved in such improvement initiatives with regard to con-
ventional languages used by process mining tools. Even despite the uptake of
commercial and highly user-friendly process discovery tools, the mismatch in
modeling notation and the subsequent translation e�ort required to go from the
analysis phase to redesign brings about an unnecessary adoption barrier. There-
fore, we contend that the mining of BPMN models from execution data will prove
highly bene�cial for the further adoption of process mining, along the following
lines of reasoning:

Automated Process Identi�cation Practitioners involved in process identi�cation
and modeling, can be persuaded into using automated process discovery tech-
niques if such techniques provide e�ortless integration with popular modeling
tools. With the capability to discover BPMN models from event logs, actual time
savings can be realized for practitioners who are now typically involved in a two-
step process of �rst interpreting automated discovery results and then making
use of the insights gained for designing or adapting process models. Note that
the survey in [154] showed that process model editing functionality is amongst
the most desired additional features for the ProM-framework. This clearly indi-
cates that (automated) analysis and (re)design are tightly coupled and tools and
techniques in both areas should be maximally aligned.

Facilitating the Process Re-engineering Cycle In typical redesign scenarios, peo-
ple observe the as-is state of a process or set of processes, take certain im-
provement decisions, analyze the outcomes, and subsequently take additional
improvement measures if necessary. Currently available automated process

CHAPTER 5. FODINA 195

discovery techniques require business (process) analysts to possess additional
skills and knowledge about typical output modeling notations such as Petri nets,
Heuristic nets, or Fuzzy models. In addition, next to interpretation, practitioners
will also be required to compare the results of automated discovery with exist-
ing process models. Such a comparison is far from e�ortless requiring profound
technical understanding often unavailable in organizations with lower BPM ma-
turity. With discovered process models in native BPMN format, the mapping of
discovered vs. existing models becomes signi�cantly easier.

Improved Communication of Process Mining Results Working with a uni�ed pro-
cess model notation throughout the entire BPM life cycle will enable improved
communication between functional units as well as across organizational hierar-
chies. Due to the fact that many organizations heavily rely on process modeling
for documentation and communication, investments in data collection and data
analysis might be perceived more worthwhile because these investments should
not be looked at in isolation, but can actually contribute to and improve existing
BPM practices.

5.6.1.2 Relevance for Education

A second stakeholder group for which BPMN-based process discovery is of value
is educators and students. Generally speaking, BPM courses and text books
(e.g. [171]) kick o� with a thorough discussion on process modeling, with BPMN
often receiving a great deal of attention. In later stages or chapters, process min-
ing is brought up as well. However, this often requires educators to introduce
new modeling notations, most notably Petri nets, Heuristic nets, and Fuzzy mod-
els, given their popularity for process mining. Moreover, the introduction of such
new paradigms quickly obfuscates the link with process modeling and execution
topics. While several programs can already leverage upon previously acquired
knowledge, a majority of students, e.g. in business/management-oriented stud-
ies, do not possess such background knowledge. For that reason, a high-quality
process discovery tool which presents its results in BPMN is likely to lower the
e�ort required by educators to incorporate process mining in their units. It is
pointed out that, from a student perspective, a positive attitude towards the us-
ability and ease of use has been observed with respect to BPMN and its tool
support [172].

196 5.6. APPLICATION: BIDIMENSIONAL PROCESS DISCOVERY WITH BPMN

5.6.1.3 Relevance for Research

Key research contributions in the process mining �eld have traditionally been
strongly technical in nature. While valuable application studies have been pub-
lished as well, there exists a signi�cant opportunity for research about topics
such as usefulness, ease of use, user acceptance, etc. of process mining within
organizations. A process discovery technique with BPMN as underlying model-
ing language will lower barriers to conducting such studies, which often involve
technically lower skilled individuals. Ultimately, user-centered studies could pro-
vide valuable insights into how the full potential of process mining can be real-
ized or in what directions future process mining research should develop.

5.6.2 Comparative Study

The quality of discovered process models is inherently determined by the im-
plicit search space implied by the representational bias of a process discovery
technique (and thus its associated representation language). In [173], the au-
thors advocate for selecting the “right” representational bias when discovering
process models from event logs. They argue that the representational bias should
be based on essential properties of a process model and should not be driven by
the desired graphical representation. The process mining manifesto also lists the
aspect of representational bias as one of the key challenges in the process mining
domain [174].

While we don’t contest that the search for an optimal representational bias for
process discovery in terms of the implicit search space is of interest, a more prag-
matic stance is taken in this work. This is because, from a knowledge discovery
viewpoint [20, 22], patterns discovered from data should adhere to several prin-
ciples: validity, novelty, usefulness, and understandability. While the use of for
instance Causal nets for process discovery is likely to produce rich and high
quality results, such an approach su�ers from a steep learning curve which of-
ten leads to problems of understandability. For this reason, we argue that a more
pragmatic, user-centered stance with respect to the suitability of the representa-
tional bias is worth pursuing. This pragmatic approach is based upon an assess-
ment of some key characteristics of process modeling notations for the purpose
of process discovery, as detailed in Table 5.6. It is argued that there exist two con-
trasting e�ects that make it di�cult to agree on one �t-for-all modeling notation
for process discovery.

CHAPTER 5. FODINA 197

Table 5.6: Key characteristics of process modeling notations for the purpose of process
discovery.

Modeling Notation Ease of Inter-
pretation

Suitability
Rep. Bias Proc.

Disc.

Popularity
(Modeling)

Popularity
(Mining)

Petri net ••◦◦◦ ••◦◦◦ •◦◦◦◦ ••••◦
Heuristic net •••◦◦ ••••◦ ◦◦◦◦◦ •••••
Fuzzy model ••••◦ ••••◦ ◦◦◦◦◦ •••••
Causal net •◦◦◦◦ ••••• ◦◦◦◦◦ ••◦◦◦
EPC ••••◦ •◦◦◦◦ ••••◦ ••◦◦◦
BPMN ••••• ••◦◦◦ ••••• ◦◦◦◦◦

Based on a comparative analysis of various modeling notations, it is observed
that traditionally popular modeling notations used for process discovery (i.e.
Heuristic nets, Fuzzy models, and Causal nets) put a strong emphasis on the suit-
ability of the representational bias. Note that our judgment about the representa-
tional bias re�ects how well these notations help process discovery techniques at
expressing a large number of possible constructs, while at the same time avoiding
syntactically incorrect models as much as possible. Therefore, Petri nets, another
popular representation choice, are scored lower because it is actually non-trivial
to avoid the construction of incorrect Petri nets. On the other hand, representa-
tion languages with a less steep learning curve such as EPC and BPMN make it
more di�cult for process discovery techniques in terms of representational bias
because modeling constructs are di�cult to map against recorded data and be-
cause of the broad set of available constructs in the case of BPMN. A second, even
stronger, contrast exists in terms of the level of popularity for modeling vs. min-
ing. Basically, there exists an important discrepancy in the BPM domain between
languages used for modeling and languages used for mining. While some might
argue that models can be translated from one language to another (for instance
through the use of Petri nets as BPM’s Esperanto), this often involves non-trivial
procedures. We opt to bridge the gap between modeling and mining by making
use of BPMN as the representational language.

To conclude, we recognize that BPMN presents several drawbacks as a represen-
tational language for process discovery. Most importantly, many of its concepts
are di�cult or impossible to map with recorded event data. In addition, the broad
range of concepts also leads to the absence of a clear and crisp de�nition of its
execution semantics, which is a much desired characteristic for process discov-
ery. However, given the rationale in Section 5.6.1 for a native BPMN miner, the
next section details how these limitations can be dealt with.

198 5.6. APPLICATION: BIDIMENSIONAL PROCESS DISCOVERY WITH BPMN

5.6.3 Implementation

We deliberately considers a subset of BPMN’s notational constructs in order
to perform the control-�ow discovery. Other works have illustrated that only
a small subset of BPMN is actually being applied in real-life modeling prac-
tice [167], those being gateways (XOR and parallel), tasks, sequence �ow, start
and end event, and swim lanes. All of these constructs are also supported by
our approach. In addition, we highlight the fact that discovered BPMN process
models by our approach do provide an ideal starting point which can easily be
adapted, extended, and modi�ed by modelers and practitioners, as the discov-
ered model lies much closer to the representational language practitioners are
already applying, thus preventing conversion steps (with potential loss of accu-
racy or behavioral representation) or having to learn other modeling notations.

To perform the control-�ow discovery, we �rst apply Fodina in order to de-
rive a Causal net. Based on this information, a BPMN model is constructed
as follows. First, start and end events are added. Second, the BPMN graph
is constructed. Activities are added for each a ∈ AL: Aa. Next, a XOR in-
put and output gateway is created for each activity Aa: XORia and XORoa and
connected to the activity with sequence �ows (XORia,Aa) and (Aa,XORoa).
For each a ∈ AL, AND gateways are created for each set of activities in I(a)
and O(a): ANDi,ja and ANDo,ka , which are connected to the input and out-
put XOR gateways with sequence �ows (AND

i,j
a ,XORia) for j = 1, . . . , |I(a)| and

(XORoa,AND
o,k
a) for k = 1, . . . , |O(a)|. Next, a set of XOR connecting gateways

is constructed for each ai ∈
⋃
(I(a)) with a ∈AL,a 6= ai: XORai ,ad and for each

ao ∈
⋃
(O(a)) with a ∈ AL,a 6= ao: XORa,aod . Sequence �ows are added for

each (ANDo,ka ,XORai ,aod) so that ai ∈AL,ao ∈AL,a ∈AL,k = 1, . . . |O(a)| and
with ai ∈ O(a)k9. Similarly, we add �ows for each (XOR

ai ,ao
d ,ANDi,ja) so that

ai ∈ AL,ao ∈ AL,a ∈ AL, j = 1, . . . |I(a)| and with ao ∈ I(a)j. Finally, the start
and end event are connected with all the activities Aa for which I(a) = {∅} and
O(a) = {∅} respectively. If no such activity can be found, the algorithm deter-
mines a single start/end activity based on the frequency of the activity occurring
most commonly at the start/end of traces. On the other hand, if multiple start or
ending activities can be identi�ed, they are connected through a XOR gateway
with the starting and ending event. The third phase of the control-�ow discovery
algorithm consists of simpli�cation of the BPMN model. This simpli�cation step
consists of iterative removal of all gateways which only contain a single incom-

9We assume here that the input and output sets are ordered. O(a)k thus returns the jth subset
ofO(a).

CHAPTER 5. FODINA 199

ing and one outgoing sequence �ow, merging all AND gateways with the same
incoming activities and a single outgoing activity (using a XOR gateway to con-
nect the merged outgoing activities to the AND gateway) and merging all AND
gateways with the same outgoing activities and a single incoming activity (using
a XOR gateway to connect the merged incoming activities to the AND gateway).

The majority of existing process discovery algorithms focus on discovering the
control-�ow perspective of an event log, meaning that they use the sequence
and ordering of activities to derive a process model using a particular represen-
tational language. Other techniques exist which start from another event log
perspective (social network extraction techniques [175], for instance). Here, we
apply a bidimensional approach, directly incorporating the social (i.e. originator)
perspective in the discovered model, together with control-�ow (i.e. the sequence
�ow between activities).

To model originator information, our technique makes use of the swimlane con-
struct of BPMN, meaning that our technique attempts to create a number of
swimlanes containing one or more activities. Each swimlane then represent a
“worker pool” (or “role”) which is responsible for executing its contained activ-
ities. The swimlanes are discovered as follows. Recall o : L → OL as being
the function returning the originator (i.e. the role, person, group, department...)
having executed an event. Depending on the desired level of granularity, end-
users can choose which originator attribute to use to construct the swimlanes.
First, for each activity a ∈ AL, a dedicated swimlane-representing set Si = {a}

is constructed, containing this single activity, so that S = {S1, . . . ,S|TL|}. Next,
swimlanes Si and Sj are merged i� ∃o ∈ OL,a ∈ Si,b ∈ Sj,σ ∈ L,τ ∈ L : [i 6=

j ∧ a(σ) = a ∧ a(τ) = b ∧ o(σ) = o(τ) = o]. Ultimately, this leads to a set
of merged swimlanes representing a grouping of activities which are to be con-
tained in their swimlane. The grouping is performed such that each swimlane
also represents a “role” (a distinct grouping of originators) responsible for this
set of activities.

5.6.4 Illustrating Example

This section illustrates the developed miner by means of a concise, �ctitious ex-
ample. To do so, we utilize the driversLicenseLoop event log (a commonly used
log in benchmarking setups, see [65]), and annotate this event log with origina-
tor information. Figure 5.10 depicts a number of screen captions illustrating the

200 5.7. CONCLUSIONS

(a) Mined BPMN model without swimlanes or conformance visualization.

(b) Mined BPMN model with swimlanes and conformance visualization.

(c) Conformance analysis of mined BPMN diagram against noisy event log.

Figure 5.10: Screen captions illustrating discovery features of BPMN Miner.

features of the BPMN Miner plugin. Figure 5.10(a) shows the result of mining the
BPMN model from the driversLicenseLoop event log without creating swimlanes
or performing conformance analysis. This model can be exported to XPDL and
imported in third-party tools or converted in ProM to a Petri net and used for
further analysis. Next, Figure 5.10(b) shows the discovered BPMN model with
the bidimensional discovery and conformance analysis enabled. As shown, the
model has a perfect �tness level (all activities green). Each swimlane represents a
pool of originators responsible for the activities contained within the swimlane.
Figure 5.10(c) shows the result of a conformance analysis of the mined BPMN
diagram (without swimlanes) against the event log in which a high amount of
noise was introduced and does thus not �t the discovered model. The coloring
of activities (green to red scale) indicate problematic areas with a high amount
of deviations.

5.7 Conclusions

This chapter has presented Fodina, a process discovery technique which follows
the generic idea of heuristic process discovery algorithms. Although such tech-

CHAPTER 5. FODINA 201

niques have proven themselves as robust process discovery algorithms and able
to deal with real-life event logs containing a large amount of variety of behavior,
we identi�ed some particular issues which limit the robustness and reliability of
the technique. As such, we have set out to perform a thorough literature review
and evaluation of the existing heuristic process discovery variants with their im-
plementation to consequently propose a new technique which was proven to
be more robust via a comprehensive evaluation experiment. Furthermore, the
proposed technique puts forward some novel contributions, most notably the
capability to mine duplicate tasks and the ability to con�gure various options to
guide the discovery algorithms towards particular process model solutions.

Concerning future work, we plan to expand the feature set of Fodina, particu-
larly concerning duplicate task mining, by allowing users to provide feedback
concerning which duplicate tasks should be merged, thus allowing the possibil-
ity to “collapse” the process model and inspect the resulting impact on �tness and
structural clarity. Another interesting opportunity is to separate the method for
duplicate tasks mining in a dedicated event log “pre�lterer”, so that the technique
can also be applied to enable other discovery algorithm to discover duplicate ac-
tivities in this manner. It is also possible to devise more advanced techniques to
“duplicate” tasks, for example based on frequent item sets [176–179].

Finally, an interesting avenue for further work is to combine the aspect of pro-
cess discovery with (arti�cial) negative events. Recall for instance that we have
argued that the direct succession of a task a after b is not always suitable direct
counter-evidence against the direct succession ofb aftera. However, what would
be suitable counter-evidence would be the occurrence of a negative event b− af-
ter a. As such, changing the dependency metrics to take into account negative
information seems like a straightforward and interesting possibility for future
research.

202 5.8. EXPERIMENTAL RESULT TABLES

5.8 Experimental Result Tables

The following tables present the full set of results obtained in the Fodina bench-
marking experiment (Section 5.5).

CHAPTER 5. FODINA 203

Table 5.7: Results of the Fodina conformance checking experiment. This table lists the
results for the Average Alignment Based Trace Fitness metric.

Algorithm A A++ A6 HM5 HM6 FHM6 F HM5L HM6L FHM6L FL

Model pnml pnml pnml pnml pnml flex pnml pnml pnml flex pnml
Event Log f

avg
a

permutations\perml10a3.xes 0.000 1.000 NA NA NA 1.000 NA NA NA 1.000 NA
permutations\perml3a10.xes 0.000 1.000 NA NA NA 1.000 0.999 NA NA 1.000 1.000
permutations\perml3a3.xes NA 1.000 NA 0.750 0.822 1.000 0.889 0.750 0.901 1.000 1.000
permutations\perml3a5.xes NA 1.000 NA 0.787 0.787 1.000 0.996 0.787 0.787 1.000 1.000
permutations\perml5a10.xes 0.000 1.000 NA NA NA NA NA NA NA 1.000 NA
permutations\perml5a3.xes 0.000 NA NA NA NA 1.000 NA NA NA 1.000 NA
permutations\perml5a5.xes 0.000 NA NA NA NA 1.000 NA NA NA 1.000 NA
random\randpms10000d1.xes 0.000 NA NA NA NA 1.000 NA NA NA 1.000 NA
random\randpms10000d2.xes 0.000 NA NA NA NA 1.000 NA NA NA 1.000 NA
random\randpms10000d3.xes 0.000 NA NA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms1000d1.xes NA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms1000d2.xes 0.353 0.830 0.353 1.000 1.000 1.000 1.000 1.000 0.868 1.000 1.000
random\randpms1000d3.xes 0.115 0.295 0.115 1.000 1.000 1.000 1.000 1.000 0.727 1.000 1.000
random\randpms100d1.xes NA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms100d2.xes 0.230 0.700 0.230 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms100d3.xes 0.558 0.853 0.558 1.000 1.000 1.000 1.000 1.000 0.928 1.000 1.000
random\rands10000l20m8a10.xes NA 1.000 NA NA NA NA NA NA NA 1.000 1.000
random\rands1000l10m4a5.xes NA 1.000 NA 0.961 0.961 1.000 0.992 0.961 0.664 1.000 1.000
random\rands100l5m2a3.xes NA 1.000 NA 0.947 0.947 1.000 0.982 0.947 0.520 1.000 1.000
reallife\realdocman.xes NA NA NA NA NA NA 0.975 NA NA NA 0.996
reallife\realhospital.xes NA NA NA NA NA NA 0.857 NA NA NA NA
reallife\realincman.xes NA NA NA NA NA 1.000 0.977 NA 0.604 1.000 0.999
reallife\realoutsourcing.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\a10skip.xes 0.972 0.972 0.972 1.000 1.000 1.000 1.000 1.000 0.972 1.000 1.000
synthetic\a12.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\a5.xes 1.000 1.000 NA 1.000 1.000 1.000 1.000 1.000 0.943 1.000 1.000
synthetic\a6nfc.xes 0.985 1.000 0.985 0.985 0.985 1.000 0.995 0.985 0.985 1.000 0.995
synthetic\a7.xes 1.000 1.000 1.000 0.974 0.943 1.000 0.934 0.974 NA 1.000 0.996
synthetic\a8.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\betasimpli�ed.xes 0.725 0.851 0.725 1.000 1.000 1.000 1.000 1.000 0.920 1.000 1.000
synthetic\choice.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.942 1.000 1.000
synthetic\driverslicense.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\driverslicenseloop.xes NA 0.995 0.153 1.000 1.000 1.000 1.000 1.000 0.738 1.000 1.000
synthetic\herbst�g3p4.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g5p19.xes 0.707 0.869 0.707 1.000 1.000 1.000 1.000 1.000 0.644 1.000 1.000
synthetic\herbst�g6p18.xes NA NA NA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p31.xes 1.000 1.000 1.000 0.778 1.000 1.000 1.000 0.778 1.000 1.000 1.000
synthetic\herbst�g6p36.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p38.xes NA NA NA 0.799 0.799 1.000 0.977 0.799 0.545 1.000 1.000
synthetic\herbst�g6p41.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\l2l.xes 1.000 1.000 1.000 0.851 1.000 1.000 1.000 0.851 1.000 1.000 1.000
synthetic\l2loptional.xes 1.000 1.000 1.000 0.928 1.000 1.000 1.000 0.928 0.901 1.000 1.000
synthetic\l2lskip.xes 0.427 1.000 0.427 0.875 1.000 1.000 1.000 0.875 1.000 1.000 1.000
synthetic\prAm6.xes NA NA NA NA NA NA NA NA NA NA 0.999
synthetic\prBm6.xes NA NA NA NA NA NA NA NA 0.925 NA 0.999
synthetic\prCm6.xes NA NA NA 0.000 0.000 NA 0.395 0.000 0.000 NA NA
synthetic\prDm6.xes 0.000 NA NA NA NA NA NA NA NA NA NA
synthetic\prEm6.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\prFm6.xes 0.000 NA NA NA NA NA NA NA NA NA NA
synthetic\prGm6.xes 0.000 NA 0.102 NA NA NA NA NA NA NA NA

204 5.8. EXPERIMENTAL RESULT TABLES

Table 5.8: Results of the Fodina conformance checking experiment. This table lists the
results for the One Align Precision metric.

Algorithm A A++ A6 HM5 HM6 FHM6 F HM5L HM6L FHM6L FL

Model pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml
Event Log a1p
permutations\perml10a3.xes NA 0.711 NA NA NA NA NA NA NA NA NA
permutations\perml3a10.xes NA 0.711 NA NA NA 0.868 0.917 NA NA 0.769 0.750
permutations\perml3a3.xes NA 0.647 NA 1.000 1.000 0.533 0.923 1.000 0.435 0.792 0.750
permutations\perml3a5.xes NA 0.680 NA 0.444 0.440 0.621 0.703 0.444 0.440 0.781 0.750
permutations\perml5a10.xes NA 0.776 NA NA NA NA NA NA NA NA NA
permutations\perml5a3.xes NA NA NA NA NA NA NA NA NA NA NA
permutations\perml5a5.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d1.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d2.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d3.xes NA NA NA 0.926 0.926 0.844 0.926 0.926 0.926 NA 0.838
random\randpms1000d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms1000d2.xes 1.000 0.682 1.000 0.815 0.815 0.830 0.815 0.815 1.000 0.510 0.781
random\randpms1000d3.xes 1.000 0.803 1.000 0.695 0.695 0.650 0.695 0.695 0.844 0.186 0.632
random\randpms100d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms100d2.xes 1.000 0.829 1.000 0.851 0.851 0.881 0.851 0.851 0.851 0.481 0.820
random\randpms100d3.xes 1.000 0.770 1.000 0.886 0.886 0.810 0.886 0.886 0.983 0.349 0.795
random\rands10000l20m8a10.xes NA 0.243 NA NA NA NA NA NA NA NA 0.307
random\rands1000l10m4a5.xes NA 0.436 NA 0.266 0.266 0.281 0.285 0.266 0.225 NA 0.523
random\rands100l5m2a3.xes NA 0.631 NA 0.472 0.473 0.447 0.486 0.472 0.635 0.382 0.727
reallife\realdocman.xes NA NA NA NA NA NA 0.890 NA NA NA 0.711
reallife\realhospital.xes NA NA NA 0.036 0.044 NA 0.099 0.036 0.052 NA NA
reallife\realincman.xes 0.508 0.000 0.381 NA NA NA 0.955 NA 0.818 NA 0.811
reallife\realoutsourcing.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\a10skip.xes 1.000 1.000 1.000 1.000 1.000 0.915 1.000 1.000 1.000 0.609 0.918
synthetic\a12.xes 1.000 1.000 1.000 1.000 1.000 0.878 1.000 1.000 1.000 0.527 0.870
synthetic\a5.xes 0.999 0.999 0.500 0.929 0.929 0.840 0.999 0.929 0.931 0.528 0.876
synthetic\a6nfc.xes 0.873 1.000 0.873 0.861 0.861 0.797 0.917 0.861 0.861 0.488 0.917
synthetic\a7.xes 1.000 1.000 1.000 0.998 0.881 0.799 1.000 0.998 NA 0.321 0.805
synthetic\a8.xes 1.000 1.000 1.000 1.000 1.000 0.932 1.000 1.000 1.000 0.694 0.933
synthetic\betasimpli�ed.xes 1.000 0.636 1.000 0.857 0.857 0.923 0.857 0.857 0.898 0.923 0.857
synthetic\choice.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\driverslicense.xes 0.889 1.000 1.000 0.889 0.889 0.952 0.889 0.889 0.889 0.952 0.889
synthetic\driverslicenseloop.xes NA 0.931 1.000 0.646 0.646 0.709 0.646 0.646 0.855 0.325 0.733
synthetic\herbst�g3p4.xes 0.967 0.967 0.967 0.967 0.967 0.883 0.961 0.967 0.967 0.628 0.848
synthetic\herbst�g5p19.xes 1.000 1.000 1.000 0.878 0.878 0.822 0.878 0.878 1.000 0.632 0.821
synthetic\herbst�g6p18.xes NA 0.000 0.499 0.926 0.926 0.963 0.926 0.926 0.926 0.963 0.926
synthetic\herbst�g6p31.xes 0.563 1.000 0.563 0.556 0.563 0.731 0.563 0.556 0.563 0.731 0.563
synthetic\herbst�g6p36.xes 0.917 1.000 0.917 0.917 0.917 0.967 0.917 0.917 0.917 0.967 0.917
synthetic\herbst�g6p38.xes 0.238 0.437 0.238 0.745 0.745 0.328 0.701 0.745 1.000 0.323 0.665
synthetic\herbst�g6p41.xes 1.000 1.000 1.000 1.000 1.000 0.781 1.000 1.000 1.000 0.470 0.804
synthetic\l2l.xes 0.999 0.998 0.999 0.833 0.999 0.999 0.999 0.833 0.999 0.999 0.999
synthetic\l2loptional.xes 1.000 1.000 1.000 0.937 1.000 1.000 1.000 0.937 1.000 1.000 1.000
synthetic\l2lskip.xes 1.000 0.905 1.000 0.857 0.998 0.999 0.998 0.857 0.998 0.999 0.998
synthetic\prAm6.xes NA NA NA NA NA NA NA NA NA NA 0.397
synthetic\prBm6.xes NA NA NA NA NA NA NA 0.553 0.514 NA 0.457
synthetic\prCm6.xes NA NA NA NA NA NA 0.370 NA NA NA NA
synthetic\prDm6.xes NA NA NA NA 0.164 NA NA 0.159 0.152 NA NA
synthetic\prEm6.xes NA NA 0.250 0.126 0.140 NA 0.180 NA 0.148 NA NA
synthetic\prFm6.xes NA NA 0.371 NA 0.109 NA NA NA NA NA NA
synthetic\prGm6.xes NA NA NA 0.160 0.180 NA 0.057 0.160 0.263 NA NA

CHAPTER 5. FODINA 205

Table 5.9: Results of the Fodina conformance checking experiment. This table lists the
results for the Best Align Precision metric.

Algorithm A A++ A6 HM5 HM6 FHM6 F HM5L HM6L FHM6L FL

Model pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml
Event Log ap

permutations\perml10a3.xes NA NA NA NA NA NA NA NA NA NA NA
permutations\perml3a10.xes 0.579 0.713 0.579 0.667 0.666 0.863 0.938 0.667 0.666 0.898 0.896
permutations\perml3a3.xes 0.531 0.654 0.531 1.000 1.000 0.640 0.988 1.000 0.642 0.902 0.864
permutations\perml3a5.xes 0.555 0.684 0.555 0.671 0.670 0.690 0.787 0.671 0.670 0.920 0.893
permutations\perml5a10.xes NA NA NA NA NA NA NA NA NA NA NA
permutations\perml5a3.xes NA NA NA NA NA NA NA NA NA NA NA
permutations\perml5a5.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d1.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d2.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d3.xes NA NA NA 0.933 0.933 NA 0.933 0.933 0.933 NA 0.846
random\randpms1000d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms1000d2.xes 1.000 0.923 1.000 0.874 0.872 0.826 0.873 0.874 1.000 0.610 0.833
random\randpms1000d3.xes 1.000 0.932 1.000 0.709 0.710 NA 0.710 0.709 0.843 0.187 0.641
random\randpms100d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms100d2.xes 1.000 0.923 1.000 0.863 0.863 0.889 0.863 0.863 0.863 0.551 0.846
random\randpms100d3.xes 1.000 0.826 1.000 0.923 0.925 0.819 0.923 0.923 0.993 0.424 0.827
random\rands10000l20m8a10.xes 0.242 0.244 0.242 NA NA NA NA NA NA NA 0.333
random\rands1000l10m4a5.xes 0.399 0.439 0.399 0.324 0.323 NA 0.336 0.324 NA NA 0.577
random\rands100l5m2a3.xes 0.526 0.636 0.526 0.613 0.604 0.560 0.633 0.613 0.987 0.438 0.818
reallife\realdocman.xes NA NA NA NA NA NA 0.940 NA NA NA NA
reallife\realhospital.xes NA NA NA NA NA NA 0.113 NA NA NA NA
reallife\realincman.xes 0.773 0.998 0.737 NA NA NA 0.984 NA NA NA 0.908
reallife\realoutsourcing.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\a10skip.xes 1.000 1.000 1.000 1.000 1.000 0.907 1.000 1.000 1.000 0.749 0.944
synthetic\a12.xes 1.000 1.000 1.000 1.000 1.000 0.878 1.000 1.000 1.000 0.720 0.897
synthetic\a5.xes 1.000 1.000 0.838 0.962 0.955 0.873 1.000 0.962 1.000 0.729 0.932
synthetic\a6nfc.xes 0.984 1.000 0.984 0.996 0.996 0.799 0.943 0.996 0.996 0.688 0.943
synthetic\a7.xes 1.000 1.000 1.000 0.997 0.906 0.705 1.000 0.997 NA 0.445 0.882
synthetic\a8.xes 1.000 1.000 1.000 1.000 1.000 0.919 1.000 1.000 1.000 0.836 0.959
synthetic\betasimpli�ed.xes 1.000 0.773 1.000 0.885 0.885 0.943 0.885 0.885 0.932 0.943 0.885
synthetic\choice.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\driverslicense.xes 0.907 1.000 0.907 0.907 0.907 0.969 0.907 0.907 0.907 NA 0.907
synthetic\driverslicenseloop.xes NA 0.942 1.000 0.719 0.720 0.741 0.719 0.719 0.905 0.397 0.800
synthetic\herbst�g3p4.xes 0.977 0.977 0.977 0.977 0.977 0.909 0.969 0.977 0.977 0.776 0.899
synthetic\herbst�g5p19.xes 1.000 1.000 1.000 0.957 0.974 0.900 0.974 0.957 1.000 0.785 0.945
synthetic\herbst�g6p18.xes NA 0.999 0.816 0.951 0.951 0.973 0.951 0.951 0.951 0.973 0.951
synthetic\herbst�g6p31.xes 0.589 1.000 0.589 1.000 0.589 0.853 0.589 1.000 0.589 0.853 0.589
synthetic\herbst�g6p36.xes 0.953 1.000 0.953 0.953 0.953 0.996 0.953 0.953 0.953 0.996 0.953
synthetic\herbst�g6p38.xes 0.493 0.581 0.493 0.811 0.811 0.436 0.796 0.811 NA 0.387 0.739
synthetic\herbst�g6p41.xes 1.000 1.000 1.000 1.000 1.000 0.803 1.000 1.000 1.000 0.412 0.822
synthetic\l2l.xes 1.000 0.999 0.999 1.000 0.999 0.999 0.999 1.000 0.999 0.999 0.999
synthetic\l2loptional.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\l2lskip.xes 1.000 0.904 1.000 1.000 0.999 0.999 0.999 1.000 0.999 0.999 0.999
synthetic\prAm6.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\prBm6.xes NA NA NA NA NA NA NA NA NA NA 0.462
synthetic\prCm6.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\prDm6.xes NA NA NA 0.180 0.152 NA NA 0.180 0.162 NA NA
synthetic\prEm6.xes NA NA 0.243 NA NA 0.316 0.211 0.216 NA NA NA
synthetic\prFm6.xes NA NA 0.331 NA NA NA NA NA NA NA NA
synthetic\prGm6.xes NA NA NA 0.145 0.176 NA 0.082 NA 0.141 NA NA

206 5.8. EXPERIMENTAL RESULT TABLES

Table 5.10: Results of the Fodina conformance checking experiment. This table lists the
results for the ETC Precision metric.

Algorithm A A++ A6 HM5 HM6 FHM6 F HM5L HM6L FHM6L FL

Model pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml
Event Log etcp

permutations\perml10a3.xes 0.604 0.711 NA 0.397 0.397 0.071 0.397 0.397 0.232 0.167 0.167
permutations\perml3a10.xes 0.478 0.711 0.478 0.550 0.550 0.003 0.003 0.550 0.550 0.050 0.050
permutations\perml3a3.xes 0.440 0.647 0.440 0.800 1.000 0.071 0.125 0.800 0.321 0.167 0.167
permutations\perml3a5.xes 0.459 0.680 0.459 0.455 0.455 0.020 0.025 0.455 0.455 0.100 0.100
permutations\perml5a10.xes NA 0.776 NA NA NA 0.001 NA NA NA NA NA
permutations\perml5a3.xes NA NA NA NA NA NA NA NA NA NA NA
permutations\perml5a5.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d1.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d2.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d3.xes NA NA NA 0.878 0.878 0.500 0.878 0.878 0.878 0.500 0.621
random\randpms1000d1.xes 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.500 1.000
random\randpms1000d2.xes 1.000 0.826 1.000 0.375 0.375 0.500 0.375 0.375 0.937 0.500 0.375
random\randpms1000d3.xes 1.000 0.909 1.000 0.375 0.375 0.500 0.375 0.375 0.913 0.500 0.375
random\randpms100d1.xes 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.500 1.000
random\randpms100d2.xes 1.000 0.907 1.000 0.831 0.831 0.500 0.831 0.831 0.831 0.500 0.591
random\randpms100d3.xes 1.000 0.765 1.000 0.750 0.750 0.500 0.750 0.750 0.973 0.500 0.750
random\rands10000l20m8a10.xes NA NA NA 0.423 0.423 0.001 0.009 0.423 0.230 0.003 0.050
random\rands1000l10m4a5.xes 0.368 0.436 0.368 0.421 0.421 0.025 0.083 0.421 0.271 0.029 0.100
random\rands100l5m2a3.xes 0.471 0.631 0.471 0.405 0.405 0.071 0.167 0.405 0.417 0.100 0.167
reallife\realdocman.xes NA NA NA 0.164 0.371 NA 0.142 0.164 0.087 NA 0.008
reallife\realhospital.xes NA NA NA 0.173 0.254 0.004 0.029 0.173 0.371 NA 0.017
reallife\realincman.xes 0.717 0.973 0.647 0.042 0.045 0.016 0.042 0.042 0.310 NA 0.036
reallife\realoutsourcing.xes 1.000 1.000 NA NA NA 0.100 0.084 NA NA 0.167 0.084
synthetic\a10skip.xes 1.000 1.000 1.000 0.912 0.912 0.500 0.811 0.912 1.000 0.500 0.636
synthetic\a12.xes 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.500 0.806
synthetic\a5.xes 0.999 0.999 0.632 0.286 0.286 0.500 0.400 0.286 0.478 0.500 0.286
synthetic\a6nfc.xes 0.852 1.000 0.852 0.697 0.697 0.500 0.484 0.697 0.697 0.500 0.484
synthetic\a7.xes 1.000 1.000 1.000 0.872 0.828 0.500 0.393 0.872 NA 0.500 0.280
synthetic\a8.xes 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.500 0.862
synthetic\betasimpli�ed.xes 0.920 0.702 0.920 0.500 0.500 0.500 0.500 0.500 0.626 0.500 0.500
synthetic\choice.xes 1.000 1.000 1.000 0.571 0.571 0.500 0.571 0.571 0.867 0.500 0.571
synthetic\driverslicense.xes 0.889 1.000 0.889 0.889 0.889 0.500 0.889 0.889 0.889 0.500 0.889
synthetic\driverslicenseloop.xes NA 0.929 1.000 0.412 0.412 0.500 0.412 0.412 0.799 0.500 0.571
synthetic\herbst�g3p4.xes 0.994 0.994 0.994 0.994 0.994 0.500 0.950 0.994 0.994 0.500 0.734
synthetic\herbst�g5p19.xes 1.000 1.000 1.000 0.589 0.589 0.250 0.589 0.589 0.750 0.250 0.564
synthetic\herbst�g6p18.xes NA 0.999 0.801 0.400 0.400 0.500 0.400 0.400 0.400 0.500 0.400
synthetic\herbst�g6p31.xes 0.563 1.000 0.563 0.750 0.563 0.500 0.563 0.750 0.563 0.500 0.563
synthetic\herbst�g6p36.xes 0.917 1.000 0.917 0.917 0.917 0.250 0.917 0.917 0.917 0.250 0.917
synthetic\herbst�g6p38.xes 0.426 0.511 0.426 0.624 0.624 0.500 0.400 0.624 1.000 0.500 0.400
synthetic\herbst�g6p41.xes 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.500 0.400
synthetic\l2l.xes 1.000 0.999 1.000 1.000 0.999 0.500 0.999 NA 0.999 0.500 0.999
synthetic\l2loptional.xes 1.000 1.000 1.000 0.400 0.400 0.500 0.400 0.400 0.894 0.500 0.400
synthetic\l2lskip.xes 1.000 0.905 1.000 0.846 0.846 0.500 0.846 0.846 0.846 0.500 0.846
synthetic\prAm6.xes 0.536 NA 0.536 0.758 0.701 0.500 0.674 0.758 NA 0.500 0.723
synthetic\prBm6.xes 0.337 0.337 0.337 0.651 0.633 0.500 0.541 0.651 0.563 0.500 0.746
synthetic\prCm6.xes NA NA NA NA NA 0.249 0.439 NA NA NA NA
synthetic\prDm6.xes NA NA NA 0.350 0.358 0.500 0.276 0.350 0.326 NA NA
synthetic\prEm6.xes NA NA 0.394 0.380 0.404 0.500 0.603 0.380 0.391 NA 0.773
synthetic\prFm6.xes NA NA 0.652 0.169 0.205 0.500 0.177 0.169 0.211 NA NA
synthetic\prGm6.xes NA NA 0.866 0.316 0.387 0.500 0.058 0.316 0.435 NA NA

CHAPTER 5. FODINA 207

Table 5.11: Results of the Fodina conformance checking experiment. This table lists the
results for the Behavioral Recall metric.

Algorithm A A++ A6 HM5 HM6 FHM6 F HM5L HM6L FHM6L FL

Model pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml
Event Log rB

permutations\perml10a3.xes 1.000 1.000 NA 0.996 0.996 0.699 0.996 0.996 0.917 1.000 1.000
permutations\perml3a10.xes 1.000 1.000 1.000 0.800 0.800 0.721 0.732 0.800 0.800 1.000 1.000
permutations\perml3a3.xes 1.000 1.000 1.000 0.600 0.667 0.815 0.689 0.600 0.844 1.000 1.000
permutations\perml3a5.xes 1.000 1.000 1.000 0.800 0.800 0.854 0.848 0.800 0.800 1.000 1.000
permutations\perml5a10.xes 1.000 1.000 1.000 NA NA NA NA NA NA NA NA
permutations\perml5a3.xes NA NA NA NA NA NA NA NA NA NA NA
permutations\perml5a5.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d1.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d2.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d3.xes NA NA NA 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
random\randpms1000d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms1000d2.xes 0.714 0.929 0.714 1.000 1.000 1.000 1.000 1.000 0.914 1.000 1.000
random\randpms1000d3.xes 0.725 0.771 0.725 1.000 1.000 1.000 1.000 1.000 0.962 0.996 1.000
random\randpms100d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms100d2.xes 0.841 0.884 0.841 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms100d3.xes 0.808 0.906 0.808 1.000 1.000 1.000 1.000 1.000 0.979 0.994 1.000
random\rands10000l20m8a10.xes 1.000 1.000 1.000 0.954 0.954 NA 0.911 0.954 NA NA 1.000
random\rands1000l10m4a5.xes 1.000 1.000 1.000 0.914 0.914 0.863 0.910 0.914 0.764 0.849 1.000
random\rands100l5m2a3.xes 1.000 1.000 1.000 0.917 0.917 0.881 0.868 0.917 0.669 0.916 1.000
reallife\realdocman.xes NA NA NA 0.666 0.673 NA 0.967 0.668 0.626 NA 0.991
reallife\realhospital.xes NA NA NA NA NA NA NA NA NA NA NA
reallife\realincman.xes 0.630 0.349 0.631 0.818 0.794 0.885 0.965 0.809 0.584 NA 0.998
reallife\realoutsourcing.xes 0.348 0.002 0.004 NA 0.008 0.827 0.977 NA 0.126 0.695 0.977
synthetic\a10skip.xes 0.946 0.946 0.946 1.000 1.000 1.000 1.000 1.000 0.946 1.000 1.000
synthetic\a12.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\a5.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.937 1.000 1.000
synthetic\a6nfc.xes 1.000 1.000 1.000 1.000 1.000 1.000 0.990 1.000 1.000 0.990 0.990
synthetic\a7.xes 1.000 1.000 1.000 0.957 1.000 0.981 0.940 0.957 NA 0.985 0.994
synthetic\a8.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\betasimpli�ed.xes 0.836 0.881 0.836 1.000 1.000 1.000 1.000 1.000 0.961 1.000 1.000
synthetic\choice.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.924 1.000 1.000
synthetic\driverslicense.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\driverslicenseloop.xes NA 0.991 0.917 1.000 1.000 1.000 1.000 1.000 0.869 1.000 1.000
synthetic\herbst�g3p4.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g5p19.xes 0.743 0.828 0.743 1.000 1.000 1.000 1.000 1.000 0.836 1.000 1.000
synthetic\herbst�g6p18.xes NA 0.795 0.734 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p31.xes 1.000 1.000 1.000 0.833 1.000 1.000 1.000 0.833 1.000 1.000 1.000
synthetic\herbst�g6p36.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p38.xes 1.000 1.000 1.000 0.875 0.875 1.000 0.963 0.875 0.750 1.000 1.000
synthetic\herbst�g6p41.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.984 1.000
synthetic\l2l.xes 1.000 1.000 1.000 0.850 1.000 1.000 1.000 0.850 1.000 1.000 1.000
synthetic\l2loptional.xes 1.000 1.000 1.000 0.911 1.000 1.000 1.000 0.911 0.918 1.000 1.000
synthetic\l2lskip.xes 0.872 1.000 0.872 0.883 1.000 1.000 1.000 0.883 1.000 1.000 1.000
synthetic\prAm6.xes 0.869 NA 0.869 0.923 0.936 0.939 0.941 0.923 NA NA 0.999
synthetic\prBm6.xes 0.982 0.983 0.982 0.968 0.979 0.968 0.956 0.968 0.979 0.954 0.998
synthetic\prCm6.xes NA NA NA 0.614 0.606 0.594 0.685 0.614 0.602 NA NA
synthetic\prDm6.xes 0.000 NA NA NA NA NA NA NA NA NA NA
synthetic\prEm6.xes NA NA 0.373 0.768 0.726 NA 0.765 0.766 0.703 NA NA
synthetic\prFm6.xes 0.000 NA NA NA 0.784 NA NA NA NA NA NA
synthetic\prGm6.xes 0.000 NA NA 0.733 NA NA NA 0.733 NA NA NA

208 5.8. EXPERIMENTAL RESULT TABLES

Table 5.12: Results of the Fodina conformance checking experiment. This table lists the
results for the Weighted Behavioral Precision metric.

Algorithm A A++ A6 HM5 HM6 FHM6 F HM5L HM6L FHM6L FL

Model pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml
Event Log pwB
permutations\perml10a3.xes 0.609 0.764 NA 0.893 0.893 0.804 0.893 0.893 0.933 0.815 0.815
permutations\perml3a10.xes 0.211 0.395 0.211 0.407 0.407 0.526 0.577 0.407 0.407 0.429 0.429
permutations\perml3a3.xes 0.393 0.573 0.393 0.783 0.852 0.680 0.861 0.783 0.691 0.648 0.648
permutations\perml3a5.xes 0.313 0.500 0.313 0.559 0.559 0.625 0.619 0.559 0.559 0.556 0.556
permutations\perml5a10.xes 0.290 0.531 0.290 NA NA NA NA NA NA NA NA
permutations\perml5a3.xes NA NA NA NA NA NA NA NA NA NA NA
permutations\perml5a5.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d1.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d2.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d3.xes NA NA NA 0.929 0.929 NA 0.929 0.929 0.929 NA 0.791
random\randpms1000d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms1000d2.xes 1.000 0.764 1.000 0.830 0.830 0.830 0.830 0.830 0.608 0.613 0.753
random\randpms1000d3.xes 0.789 0.732 0.789 0.709 0.709 NA 0.709 0.709 0.350 NA 0.542
random\randpms100d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms100d2.xes 0.867 0.838 0.867 0.886 0.886 0.886 0.886 0.886 0.886 0.620 0.827
random\randpms100d3.xes 0.984 0.699 0.984 0.896 0.896 0.896 0.896 0.896 0.775 0.733 0.753
random\rands10000l20m8a10.xes 0.149 0.161 0.149 0.170 0.170 NA NA 0.170 NA NA NA
random\rands1000l10m4a5.xes 0.324 0.389 0.324 0.437 0.435 0.411 0.430 0.435 0.413 0.413 0.403
random\rands100l5m2a3.xes 0.439 0.597 0.439 0.712 0.712 0.674 0.696 0.712 0.681 0.663 0.656
reallife\realdocman.xes NA NA NA NA NA NA 0.391 NA NA NA NA
reallife\realhospital.xes NA NA NA NA NA NA NA NA NA NA NA
reallife\realincman.xes 0.232 0.559 0.161 0.382 0.399 NA 0.681 0.375 0.324 NA 0.479
reallife\realoutsourcing.xes 0.896 0.089 0.086 NA NA NA 0.921 NA NA NA NA
synthetic\a10skip.xes 0.946 0.946 0.946 1.000 1.000 1.000 1.000 1.000 0.946 0.789 0.900
synthetic\a12.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.803 0.853
synthetic\a5.xes 1.000 1.000 0.575 1.000 1.000 1.000 1.000 1.000 0.972 0.797 0.819
synthetic\a6nfc.xes 0.870 1.000 0.870 0.870 0.870 0.870 0.808 0.870 0.870 0.873 0.808
synthetic\a7.xes 1.000 1.000 1.000 0.967 0.804 0.826 0.944 0.967 NA 0.712 0.699
synthetic\a8.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.846 0.920
synthetic\betasimpli�ed.xes 0.683 0.601 0.683 0.850 0.850 0.850 0.850 0.850 0.805 0.850 0.850
synthetic\choice.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.801 1.000 1.000
synthetic\driverslicense.xes 0.903 1.000 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903
synthetic\driverslicenseloop.xes NA 0.921 0.899 0.893 0.893 0.893 0.893 0.893 0.647 0.593 0.691
synthetic\herbst�g3p4.xes 0.992 0.992 0.992 0.992 0.992 0.992 0.983 0.992 0.992 0.842 0.820
synthetic\herbst�g5p19.xes 0.873 0.885 0.873 0.902 0.902 0.902 0.902 0.902 0.886 0.802 0.776
synthetic\herbst�g6p18.xes NA 0.773 0.466 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971
synthetic\herbst�g6p31.xes 0.558 1.000 0.558 0.513 0.558 0.558 0.558 0.513 0.558 0.558 0.558
synthetic\herbst�g6p36.xes 0.976 1.000 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976
synthetic\herbst�g6p38.xes 0.428 0.510 0.428 0.836 0.836 0.626 0.578 0.836 NA 0.719 0.598
synthetic\herbst�g6p41.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.613 0.741
synthetic\l2l.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 NA 1.000 1.000 1.000
synthetic\l2loptional.xes 1.000 1.000 1.000 0.873 1.000 1.000 1.000 0.873 0.918 1.000 1.000
synthetic\l2lskip.xes 1.000 0.887 1.000 0.829 1.000 1.000 1.000 0.829 1.000 1.000 1.000
synthetic\prAm6.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\prBm6.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\prCm6.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\prDm6.xes 1.000 NA NA NA NA NA NA NA NA NA NA
synthetic\prEm6.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\prFm6.xes 1.000 NA NA NA NA NA NA NA NA NA NA
synthetic\prGm6.xes 1.000 NA NA NA NA NA NA NA NA NA NA

CHAPTER 5. FODINA 209

Table 5.13: Results of the Fodina conformance checking experiment. This table lists the
results for the Weighted Behavioral Generalization metric.

Algorithm A A++ A6 HM5 HM6 FHM6 F HM5L HM6L FHM6L FL

Model pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml pnml
Event Log gwB
permutations\perml10a3.xes 0.609 0.764 NA 0.893 0.893 0.804 0.893 0.893 0.933 0.815 0.815
permutations\perml3a10.xes 0.211 0.395 0.211 0.407 0.407 0.526 0.577 0.407 0.407 0.429 0.429
permutations\perml3a3.xes 0.393 0.573 0.393 0.783 0.852 0.680 0.861 0.783 0.691 0.648 0.648
permutations\perml3a5.xes 0.313 0.500 0.313 0.559 0.559 0.625 0.619 0.559 0.559 0.556 0.556
permutations\perml5a10.xes 0.290 0.531 0.290 NA NA NA NA NA NA NA NA
permutations\perml5a3.xes NA NA NA NA NA NA NA NA NA NA NA
permutations\perml5a5.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d1.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d2.xes NA NA NA NA NA NA NA NA NA NA NA
random\randpms10000d3.xes NA NA NA 0.929 0.929 NA 0.929 0.929 0.929 NA 0.791
random\randpms1000d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms1000d2.xes 1.000 0.764 1.000 0.830 0.830 0.830 0.830 0.830 0.608 0.613 0.753
random\randpms1000d3.xes 0.789 0.732 0.789 0.709 0.709 NA 0.709 0.709 0.350 NA 0.542
random\randpms100d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms100d2.xes 0.867 0.838 0.867 0.886 0.886 0.886 0.886 0.886 0.886 0.620 0.827
random\randpms100d3.xes 0.984 0.699 0.984 0.896 0.896 0.896 0.896 0.896 0.775 0.733 0.753
random\rands10000l20m8a10.xes 0.149 0.161 0.149 0.170 0.170 NA NA 0.170 NA NA NA
random\rands1000l10m4a5.xes 0.324 0.389 0.324 0.437 0.435 0.411 0.430 0.435 0.413 0.413 0.403
random\rands100l5m2a3.xes 0.439 0.597 0.439 0.712 0.712 0.674 0.696 0.712 0.681 0.663 0.656
reallife\realdocman.xes NA NA NA NA NA NA 0.391 NA NA NA NA
reallife\realhospital.xes NA NA NA NA NA NA NA NA NA NA NA
reallife\realincman.xes 0.232 0.559 0.161 0.382 0.399 NA 0.681 0.375 0.324 NA 0.479
reallife\realoutsourcing.xes 0.896 0.089 0.086 NA NA NA 0.921 NA NA NA NA
synthetic\a10skip.xes 0.946 0.946 0.946 1.000 1.000 1.000 1.000 1.000 0.946 0.789 0.900
synthetic\a12.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.803 0.853
synthetic\a5.xes 1.000 1.000 0.575 1.000 1.000 1.000 1.000 1.000 0.972 0.797 0.819
synthetic\a6nfc.xes 0.870 1.000 0.870 0.870 0.870 0.870 0.808 0.870 0.870 0.873 0.808
synthetic\a7.xes 1.000 1.000 1.000 0.967 0.804 0.826 0.944 0.967 NA 0.712 0.699
synthetic\a8.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.846 0.920
synthetic\betasimpli�ed.xes 0.683 0.601 0.683 0.850 0.850 0.850 0.850 0.850 0.805 0.850 0.850
synthetic\choice.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.801 1.000 1.000
synthetic\driverslicense.xes 0.903 1.000 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903
synthetic\driverslicenseloop.xes NA 0.921 0.899 0.893 0.893 0.893 0.893 0.893 0.647 0.593 0.691
synthetic\herbst�g3p4.xes 0.992 0.992 0.992 0.992 0.992 0.992 0.983 0.992 0.992 0.842 0.820
synthetic\herbst�g5p19.xes 0.873 0.885 0.873 0.902 0.902 0.902 0.902 0.902 0.886 0.802 0.776
synthetic\herbst�g6p18.xes NA 0.773 0.466 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971
synthetic\herbst�g6p31.xes 0.558 1.000 0.558 0.513 0.558 0.558 0.558 0.513 0.558 0.558 0.558
synthetic\herbst�g6p36.xes 0.976 1.000 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976
synthetic\herbst�g6p38.xes 0.428 0.510 0.428 0.836 0.836 0.626 0.578 0.836 NA 0.719 0.598
synthetic\herbst�g6p41.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.613 0.741
synthetic\l2l.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 NA 1.000 1.000 1.000
synthetic\l2loptional.xes 1.000 1.000 1.000 0.873 1.000 1.000 1.000 0.873 0.918 1.000 1.000
synthetic\l2lskip.xes 1.000 0.887 1.000 0.829 1.000 1.000 1.000 0.829 1.000 1.000 1.000
synthetic\prAm6.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\prBm6.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\prCm6.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\prDm6.xes 1.000 NA NA NA NA NA NA NA NA NA NA
synthetic\prEm6.xes NA NA NA NA NA NA NA NA NA NA NA
synthetic\prFm6.xes 1.000 NA NA NA NA NA NA NA NA NA NA
synthetic\prGm6.xes 1.000 NA NA NA NA NA NA NA NA NA NA

210 5.8. EXPERIMENTAL RESULT TABLES

Table 5.14: Results of the Fodina conformance checking experiment. This table lists the
results for the ICS Fitness metric.

Algorithm HM5 HM6 FHM6 F HM5L HM6L FHM6L FL

Model hnet hnet cnet cnet hnet hnet cnet cnet
Event Log ICS

permutations\perml10a3.xes 0.996 0.996 0.959 0.996 0.996 0.894 1.000 1.000
permutations\perml3a10.xes -2.116 -2.116 0.969 0.998 -2.116 -2.116 1.000 1.000
permutations\perml3a3.xes -0.200 0.565 0.944 0.527 -0.200 0.772 1.000 1.000
permutations\perml3a5.xes -0.224 -0.224 0.952 0.990 -0.224 -0.224 1.000 1.000
permutations\perml5a10.xes -0.830 -0.830 0.960 0.929 -0.830 -0.830 1.000 1.000
permutations\perml5a3.xes 0.945 0.945 0.943 0.945 0.945 0.881 1.000 1.000
permutations\perml5a5.xes 0.859 0.859 0.944 0.986 0.859 0.854 1.000 1.000
random\randpms10000d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 0.875 1.000
random\randpms10000d2.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms10000d3.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms1000d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms1000d2.xes 1.000 1.000 1.000 1.000 1.000 0.741 0.929 1.000
random\randpms1000d3.xes 1.000 1.000 1.000 1.000 1.000 0.960 0.845 1.000
random\randpms100d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms100d2.xes 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000
random\randpms100d3.xes 1.000 1.000 1.000 1.000 1.000 0.979 0.929 1.000
random\rands10000l20m8a10.xes 0.964 0.964 0.999 0.992 0.964 -2.497 0.570 1.000
random\rands1000l10m4a5.xes 0.952 0.952 0.994 0.989 0.952 -0.392 0.744 1.000
random\rands100l5m2a3.xes 0.913 0.913 0.958 0.970 0.913 -0.233 0.994 1.000
reallife\realdocman.xes 0.662 0.669 0.986 0.967 0.662 0.399 0.998 0.996
reallife\realhospital.xes 0.768 0.606 0.979 0.969 0.768 0.480 0.999 0.999
reallife\realincman.xes 0.823 0.795 0.959 0.965 0.823 0.552 1.000 0.998
reallife\realoutsourcing.xes NA -2.844 0.500 0.999 NA -3.781 0.513 0.999
synthetic\a10skip.xes 1.000 1.000 1.000 1.000 1.000 0.945 1.000 1.000
synthetic\a12.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\a5.xes 1.000 1.000 1.000 1.000 1.000 0.937 0.999 1.000
synthetic\a6nfc.xes 1.000 1.000 1.000 0.990 1.000 1.000 0.998 0.990
synthetic\a7.xes 0.957 0.999 0.999 0.950 0.957 NA 0.998 0.994
synthetic\a8.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\betasimpli�ed.xes 1.000 1.000 1.000 1.000 1.000 0.961 1.000 1.000
synthetic\choice.xes 1.000 1.000 1.000 1.000 1.000 0.923 1.000 1.000
synthetic\driverslicense.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\driverslicenseloop.xes 1.000 1.000 1.000 1.000 1.000 0.866 1.000 1.000
synthetic\herbst�g3p4.xes 1.000 1.000 1.000 0.998 1.000 1.000 0.942 1.000
synthetic\herbst�g5p19.xes 1.000 1.000 1.000 1.000 1.000 0.671 0.999 1.000
synthetic\herbst�g6p18.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p31.xes 0.500 1.000 1.000 1.000 0.500 1.000 1.000 1.000
synthetic\herbst�g6p36.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p38.xes 0.552 0.552 0.875 0.963 0.552 -0.066 0.999 1.000
synthetic\herbst�g6p41.xes 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
synthetic\l2l.xes 0.848 1.000 1.000 1.000 0.848 1.000 1.000 1.000
synthetic\l2loptional.xes 0.911 1.000 1.000 1.000 0.911 0.917 1.000 1.000
synthetic\l2lskip.xes 0.882 1.000 1.000 1.000 0.882 1.000 1.000 1.000
synthetic\prAm6.xes 0.924 0.936 0.972 0.952 0.924 NA 0.990 0.999
synthetic\prBm6.xes 0.966 0.979 0.991 0.970 0.966 0.979 0.992 0.998
synthetic\prCm6.xes -0.245 -0.291 0.053 0.058 -0.245 -0.338 0.669 0.981
synthetic\prDm6.xes -0.187 -0.424 0.060 -0.124 -0.187 -0.487 0.527 1.000
synthetic\prEm6.xes 0.220 0.073 0.464 0.394 0.220 0.006 0.569 0.999
synthetic\prFm6.xes 0.324 0.326 0.509 0.467 0.324 0.315 0.450 1.000
synthetic\prGm6.xes 0.086 -0.155 0.371 0.308 0.086 -0.241 0.571 0.999

CHAPTER 5. FODINA 211

Table
5.15:Resultsofthe

Fodina
conform

ance
checking

experim
ent.Thistable

liststhe
resultsforthe

sim
plicity

m
etrics.

A
lgorithm

A
A

+
+

A
6

H
M

5
H
M

6
F
H
M

6
F

H
M

5
L

H
M

6
L

F
H
M

6
L

F
L

M
odel

pnml
pnml

pnml
pnml

pnml
pnml

pnml
pnml

pnml
pnml

pnml
Event

Log
#a

/
#p

/
#t

perm
utations\perm

l10a3.xes
2

/2
/5

10
/3

/5
N

A
/N

A
/N

A
26

/11
/11

26
/11

/11
72

/19
/31

26
/11

/11
26

/11
/11

62
/19

/17
70

/25
/35

40
/10

/20
perm

utations\perm
l3a10.xes

2
/2

/12
24

/3
/12

2
/2

/12
82

/32
/32

82
/32

/32
1374

/54
/402

1294
/34

/362
82

/32
/32

82
/32

/32
504

/144
/252

264
/24

/132
perm

utations\perm
l3a3.xes

2
/2

/5
10

/3
/5

2
/2

/5
10

/4
/5

14
/8

/5
72

/19
/31

36
/10

/13
10

/4
/5

39
/14

/13
70

/25
/35

40
/10

/20
perm

utations\perm
l3a5.xes

2
/2

/7
14

/3
/7

2
/2

/7
42

/17
/17

42
/17

/17
214

/29
/77

174
/19

/57
42

/17
/17

42
/17

/17
154

/49
/77

84
/14

/42
perm

utations\perm
l5a10.xes

2
/2

/12
24

/3
/12

2
/2

/12
N

A
/N

A
/32

N
A

/N
A

/32
N

A
/N

A
/1326

N
A

/N
A

/452
N

A
/N

A
/32

N
A

/N
A

/32
N

A
/N

A
/252

N
A

/N
A

/132
perm

utations\perm
l5a3.xes

N
A

/N
A

/5
N

A
/N

A
/5

N
A

/N
A

/5
N

A
/N

A
/11

N
A

/N
A

/11
N

A
/N

A
/31

N
A

/N
A

/11
N

A
/N

A
/11

N
A

/N
A

/17
N

A
/N

A
/35

N
A

/N
A

/20
perm

utations\perm
l5a5.xes

N
A

/N
A

/7
N

A
/N

A
/7

N
A

/N
A

/7
N

A
/N

A
/17

N
A

/N
A

/17
N

A
/N

A
/89

N
A

/N
A

/49
N

A
/N

A
/17

N
A

/N
A

/33
N

A
/N

A
/77

N
A

/N
A

/42
random

\randpm
s10000d1.xes

N
A

/N
A

/8
N

A
/N

A
/8

N
A

/N
A

/8
N

A
/N

A
/8

N
A

/N
A

/8
N

A
/N

A
/22

N
A

/N
A

/8
N

A
/N

A
/8

N
A

/N
A

/8
N

A
/N

A
/26

N
A

/N
A

/14
random

\randpm
s10000d2.xes

N
A

/N
A

/0
N

A
/N

A
/16

N
A

/N
A

/16
N

A
/N

A
/18

N
A

/N
A

/18
N

A
/N

A
/56

N
A

/N
A

/18
N

A
/N

A
/18

N
A

/N
A

/18
N

A
/N

A
/56

N
A

/N
A

/18
random

\randpm
s10000d3.xes

N
A

/N
A

/38
N

A
/N

A
/38

N
A

/N
A

/38
96

/40
/43

96
/40

/43
270

/127
/130

96
/40

/43
96

/40
/43

96
/40

/43
346

/134
/162

146
/46

/73
random

\randpm
s1000d1.xes

14
/7

/7
14

/7
/7

14
/7

/7
14

/7
/7

14
/7

/7
42

/21
/21

14
/7

/7
14

/7
/7

14
/7

/7
42

/21
/21

14
/7

/7
random

\randpm
s1000d2.xes

74
/25

/14
33

/14
/14

78
/26

/14
54

/20
/26

54
/20

/26
114

/50
/56

54
/20

/26
54

/20
/26

30
/15

/14
122

/51
/60

64
/22

/32
random

\randpm
s1000d3.xes

228
/81

/51
201

/67
/51

236
/83

/51
188

/71
/83

188
/71

/83
420

/187
/199

188
/71

/83
188

/71
/83

130
/60

/54
580

/202
/267

298
/85

/149
random

\randpm
s100d1.xes

18
/8

/9
18

/8
/9

18
/8

/9
18

/8
/9

18
/8

/9
58

/28
/29

18
/8

/9
18

/8
/9

18
/8

/9
58

/28
/29

18
/8

/9
random

\randpm
s100d2.xes

46
/19

/18
44

/18
/18

46
/19

/18
46

/19
/22

46
/19

/22
126

/59
/62

46
/19

/22
46

/19
/22

46
/19

/22
134

/60
/66

56
/21

/28
random

\randpm
s100d3.xes

56
/24

/20
61

/23
/20

56
/24

/20
56

/24
/26

56
/24

/26
140

/66
/68

56
/24

/26
56

/24
/26

44
/21

/20
174

/69
/82

76
/26

/38
random

\rands10000l20m
8a10.xes

2
/2

/12
24

/3
/12

2
/2

/12
82

/32
/32

82
/32

/32
5860

/54
/816

1096
/34

/144
82

/32
/32

712
/194

/122
4041

/99
/1125

264
/24

/132
random

\rands1000l10m
4a5.xes

2
/2

/7
14

/3
/7

N
A

/2
/7

42
/17

/17
42

/17
/17

220
/29

/67
96

/19
/29

42
/17

/17
169

/49
/37

318
/40

/121
84

/14
/42

random
\rands100l5m

2a3.xes
2

/2
/5

10
/3

/5
2

/2
/5

26
/11

/11
26

/11
/11

72
/19

/31
42

/13
/17

26
/11

/11
57

/19
/17

92
/23

/41
40

/10
/20

reallife\realdocm
an.xes

N
A

/N
A

/N
A

N
A

/N
A

/N
A

N
A

/N
A

/N
A

809
/108

/205
621

/62
/129

N
A

/N
A

/N
A

424
/69

/208
809

/108
/205

1940
/322

/432
N

A
/N

A
/N

A
1841

/144
/919

reallife\realhospital.xes
N

A
/N

A
/N

A
N

A
/N

A
/N

A
N

A
/N

A
/N

A
3226

/442
/1278

3458
/466

/1266
22033

/3093
/8137

3240
/504

/1575
3226

/442
/1278

4295
/701

/1425
N

A
/N

A
/N

A
8999

/868
/4499

reallife\realincm
an.xes

78
/20

/18
273

/50
/18

70
/20

/18
229

/50
/80

208
/55

/68
669

/102
/270

181
/32

/90
229

/50
/80

314
/82

/83
N

A
/N

A
/N

A
310

/34
/155

reallife\realoutsourcing.xes
22

/10
/7

25
/8

/7
55

/10
/7

N
A

/N
A

/N
A

98
/33

/28
160

/43
/72

64
/14

/32
N

A
/N

A
/N

A
154

/46
/40

383
/40

/134
78

/14
/39

synthetic\a10skip.xes
30

/14
/12

30
/14

/12
30

/14
/12

30
/13

/13
30

/13
/13

78
/38

/38
32

/15
/15

30
/13

/13
28

/13
/12

86
/39

/42
38

/15
/19

synthetic\a12.xes
30

/14
/14

30
/14

/14
30

/14
/14

30
/14

/14
30

/14
/14

90
/44

/44
30

/14
/14

30
/14

/14
30

/14
/14

103
/46

/50
46

/17
/23

synthetic\a5.xes
18

/8
/7

18
/8

/7
N

A
/8

/7
31

/13
/13

31
/13

/13
51

/24
/24

25
/11

/11
31

/13
/13

25
/11

/11
61

/25
/29

34
/12

/17
synthetic\a6nfc.xes

18
/9

/8
19

/9
/8

18
/9

/8
20

/10
/9

20
/10

/9
52

/25
/25

24
/10

/12
20

/10
/9

20
/10

/9
60

/26
/29

24
/10

/12
synthetic\a7.xes

24
/10

/9
24

/10
/9

24
/10

/9
24

/9
/10

22
/9

/9
73

/30
/32

27
/11

/12
24

/9
/10

N
A

/N
A

/N
A

133
/36

/56
54

/15
/27

synthetic\a8.xes
22

/10
/10

22
/10

/10
22

/10
/10

22
/10

/10
22

/10
/10

66
/32

/32
22

/10
/10

22
/10

/10
22

/10
/10

74
/33

/36
32

/12
/16

synthetic\betasim
pli�ed.xes

34
/15

/13
45

/18
/13

34
/15

/13
42

/17
/21

42
/17

/21
94

/43
/47

42
/17

/21
42

/17
/21

38
/16

/19
94

/43
/47

42
/17

/21
synthetic\choice.xes

24
/9

/12
24

/9
/12

24
/9

/12
48

/18
/24

48
/18

/24
96

/42
/48

48
/18

/24
48

/18
/24

30
/12

/15
96

/42
/48

48
/18

/24
synthetic\driverslicense.xes

18
/8

/9
22

/10
/9

18
/8

/9
18

/8
/9

18
/8

/9
58

/28
/29

18
/8

/9
18

/8
/9

18
/8

/9
58

/N
A

/N
A

18
/8

/9
synthetic\driverslicenseloop.xes

N
A

/N
A

/N
A

34
/13

/11
31

/12
/11

38
/15

/17
38

/15
/17

86
/39

/41
38

/15
/17

38
/15

/17
26

/12
/12

98
/40

/47
46

/15
/23

synthetic\herbst�g3p4.xes
26

/12
/12

26
/12

/12
26

/12
/12

26
/12

/12
26

/12
/12

79
/38

/38
28

/13
/13

26
/12

/12
26

/12
/12

103
/42

/50
50

/17
/25

synthetic\herbst�g5p19.xes
24

/10
/8

22
/9

/8
24

/10
/8

26
/11

/12
26

/11
/12

58
/27

/28
26

/11
/12

26
/11

/12
21

/10
/10

66
/28

/32
34

/12
/17

synthetic\herbst�g6p18.xes
N

A
/N

A
/N

A
15

/6
/7

13
/6

/7
20

/8
/10

20
/8

/10
50

/23
/25

20
/8

/10
20

/8
/10

20
/8

/10
50

/23
/25

20
/8

/10
synthetic\herbst�g6p31.xes

18
/5

/9
29

/8
/9

18
/5

/9
23

/7
/9

18
/5

/9
70

/31
/35

18
/5

/9
23

/7
/9

18
/5

/9
70

/31
/35

18
/5

/9
synthetic\herbst�g6p36.xes

24
/11

/12
28

/13
/12

24
/11

/12
24

/11
/12

24
/11

/12
76

/37
/38

24
/11

/12
24

/11
/12

24
/11

/12
76

/37
/38

24
/11

/12
synthetic\herbst�g6p38.xes

10
/6

/7
14

/7
/7

10
/6

/7
26

/11
/9

26
/11

/9
58

/23
/27

28
/10

/14
26

/11
/9

35
/14

/12
64

/24
/29

36
/12

/18
synthetic\herbst�g6p41.xes

38
/19

/16
38

/19
/16

38
/19

/16
38

/19
/16

38
/19

/16
102

/51
/48

38
/19

/16
38

/19
/16

38
/19

/16
134

/55
/64

74
/26

/37
synthetic\l2l.xes

12
/7

/6
12

/6
/6

14
/6

/6
16

/8
/6

12
/6

/6
36

/18
/18

12
/6

/6
16

/8
/6

12
/6

/6
36

/18
/18

12
/6

/6
synthetic\l2loptional.xes

12
/6

/6
12

/6
/6

12
/6

/6
22

/10
/10

20
/9

/10
40

/19
/20

20
/9

/10
22

/10
/10

14
/7

/7
40

/19
/20

20
/9

/10
synthetic\l2lskip.xes

14
/7

/6
12

/6
/6

14
/7

/6
16

/8
/7

14
/7

/7
36

/18
/18

14
/7

/7
16

/8
/7

14
/7

/7
36

/18
/18

14
/7

/7
synthetic\prA

m
6.xes

3920
/986

/363
N

A
/N

A
/N

A
3937

/990
/363

944
/336

/416
951

/369
/399

4179
/1404

/1842
1222

/429
/526

944
/336

/416
N

A
/N

A
/N

A
11579

/2336
/4818

4470
/553

/2235
synthetic\prBm

6.xes
951

/396
/317

1026
/402

/317
951

/396
/317

794
/309

/336
831

/358
/331

2927
/1122

/1291
1030

/393
/417

794
/309

/336
844

/355
/339

6408
/1450

/2615
2394

/470
/1197

synthetic\prCm
6.xes

N
A

/N
A

/N
A

N
A

/N
A

/N
A

N
A

/N
A

/N
A

740
/238

/360
781

/275
/350

5368
/1328

/2260
1210

/408
/542

740
/238

/360
1270

/390
/530

N
A

/N
A

/N
A

N
A

/N
A

/N
A

synthetic\prD
m

6.xes
0

/0
/0

N
A

/N
A

/N
A

N
A

/N
A

/N
A

1290
/450

/556
1364

/552
/516

13165
/1950

/4719
2697

/730
/1117

1290
/450

/556
1921

/710
/686

N
A

/N
A

/N
A

N
A

/N
A

/N
A

synthetic\prEm
6.xes

N
A

/N
A

/N
A

N
A

/N
A

/N
A

3949
/1137

/275
761

/293
/310

747
/322

/288
4501

/1072
/1770

1456
/464

/603
761

/293
/310

896
/370

/327
N

A
/N

A
/N

A
13044

/489
/6522

synthetic\prFm
6.xes

0
/0

/0
N

A
/N

A
/N

A
8018

/2510
/299

N
A

/367
/348

899
/406

/330
5761

/1222
/2204

2541
/713

/1020
892

/367
/348

1096
/476

/379
N

A
/N

A
/N

A
N

A
/N

A
/N

A
synthetic\prGm

6.xes
0

/0
/0

N
A

/N
A

/N
A

40021
/7589

/335
1046

/359
/440

1061
/423

/398
7620

/1473
/2891

2205
/571

/908
1046

/359
/440

1416
/529

/516
N

A
/N

A
/N

A
N

A
/N

A
/N

A

212 5.8. EXPERIMENTAL RESULT TABLES

Table 5.16: Results of the Fodina conformance checking experiment. This table lists the
results for the Fitting Single Trace Measure metric.

Algorithm A A++ A6 HM5L HM6L FHM6L FL

Model pnml pnml pnml hnet hnet flex cnet
Event Log PM1

permutations\perml10a3.xes 0.625 0.489 0.940 0.360 0.180 0.430 1.000
permutations\perml3a10.xes 0.981 0.977 1.000 0.820 1.000 1.000 1.000
permutations\perml3a3.xes 0.926 0.852 1.000 0.560 1.000 1.000 1.000
permutations\perml3a5.xes 0.928 0.928 1.000 0.670 1.000 1.000 1.000
permutations\perml5a10.xes 0.902 0.909 0.985 0.690 0.970 1.000 1.000
permutations\perml5a3.xes 0.675 0.691 0.940 0.530 0.760 0.900 1.000
permutations\perml5a5.xes 0.782 0.784 0.959 0.540 0.890 0.970 1.000
random\randpms10000d1.xes 0.442 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms10000d2.xes 0.477 0.305 0.965 0.900 0.910 1.000 1.000
random\randpms10000d3.xes 0.705 0.533 0.983 0.840 0.910 0.980 1.000
random\randpms1000d1.xes 0.846 0.669 1.000 1.000 1.000 1.000 1.000
random\randpms1000d2.xes 0.849 0.763 1.000 1.000 1.000 1.000 1.000
random\randpms1000d3.xes 0.612 0.514 0.974 0.640 0.810 0.840 1.000
random\randpms100d1.xes 1.000 1.000 1.000 1.000 1.000 1.000 1.000
random\randpms100d2.xes 0.450 0.490 0.948 0.840 0.900 0.980 1.000
random\randpms100d3.xes 0.930 0.810 1.000 1.000 1.000 1.000 1.000
random\rands10000l20m8a10.xes 0.055 0.029 0.781 0.040 0.240 0.710 1.000
random\rands1000l10m4a5.xes 0.347 0.267 0.885 0.230 0.430 0.750 1.000
random\rands100l5m2a3.xes 0.770 0.780 0.966 0.600 0.770 0.890 1.000
reallife\realdocman.xes 0.846 0.976 0.999 1.000 1.000 1.000 1.000
reallife\realhospital.xes 0.273 0.360 0.893 0.340 0.550 0.740 1.000
reallife\realincman.xes 0.800 0.951 0.995 1.000 1.000 1.000 1.000
reallife\realoutsourcing.xes 0.631 0.924 0.970 0.920 0.930 0.930 1.000
synthetic\a10skip.xes 0.467 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\a12.xes 0.523 0.753 1.000 1.000 1.000 1.000 1.000
synthetic\a5.xes 0.657 0.883 1.000 0.900 1.000 1.000 1.000
synthetic\a6nfc.xes 0.800 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\a7.xes 0.927 0.903 1.000 1.000 1.000 1.000 1.000
synthetic\a8.xes 0.813 0.643 1.000 1.000 1.000 1.000 1.000
synthetic\betasimpli�ed.xes 1.000 0.493 1.000 1.000 1.000 1.000 1.000
synthetic\choice.xes 0.950 0.873 1.000 0.920 1.000 1.000 1.000
synthetic\driverslicense.xes 0.500 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\driverslicenseloop.xes 0.483 0.654 0.953 0.670 0.810 0.780 1.000
synthetic\herbst�g3p4.xes 0.906 0.781 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g5p19.xes 0.883 0.767 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p18.xes 0.283 0.517 0.878 0.750 1.000 0.860 1.000
synthetic\herbst�g6p31.xes 0.293 0.770 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p36.xes 0.450 1.000 1.000 1.000 1.000 1.000 1.000
synthetic\herbst�g6p38.xes 0.850 0.857 1.000 0.560 1.000 1.000 1.000
synthetic\herbst�g6p41.xes 0.750 0.750 1.000 1.000 1.000 1.000 1.000
synthetic\l2l.xes 1.000 1.000 1.000 0.750 1.000 1.000 1.000
synthetic\l2loptional.xes 0.237 0.997 0.972 1.000 1.000 1.000 1.000
synthetic\l2lskip.xes 0.490 1.000 0.944 1.000 1.000 1.000 1.000
synthetic\prAm6.xes 0.959 0.965 1.000 1.000 1.000 1.000 1.000
synthetic\prBm6.xes 0.941 0.959 1.000 1.000 1.000 1.000 1.000
synthetic\prCm6.xes 0.954 0.976 1.000 1.000 1.000 1.000 1.000
synthetic\prDm6.xes 0.968 0.981 1.000 1.000 1.000 1.000 1.000
synthetic\prEm6.xes 0.962 0.971 1.000 0.990 1.000 1.000 1.000
synthetic\prFm6.xes 0.963 0.976 1.000 1.000 1.000 1.000 1.000
synthetic\prGm6.xes 0.968 0.970 1.000 1.000 1.000 1.000 1.000

213

Chapter 6

Event-Granular Real-Time Decomposed
Conformance Analysis

“Streaming in the wind
The smoke from Fuji
Vanishes in the sky;
I know not where

These thoughts of mine go, either.”
– The Monk Saigyô

6.1 Introduction

In this chapter, we look at the application of conformance checking techniques
in a real-time manner. Conformance checking techniques face some hard and
complex challenges in the context of today’s organizations. First, the increasing
amount of information systems being implemented and applied to provide op-
erational support, drive decisions and assist managers have led to a barrage of
data, which should be parsed and analyzed in a manner which is both correct and
scalable by conformance checking techniques. Second, given the current turbu-
lent economic environment, stakeholders desire more than ever the timely de-
livery of reports and warnings, so that conformance checking techniques should
no longer be applied in a post-hoc manner, after the actual occurrence of the
activities being executed. Third, such techniques should be able to quickly and

214 6.2. PRELIMINARIES

correctly localize and pinpoint deviating behavior and its root causes. As process
models can become very complex, one wishes to highlight misbehaving parts in a
running model, together with the ability to “zoom in and out” on these elements.
Many conformance checking techniques have mainly been aiming to derive a
global quality “metric”, denoting the global �tness or appropriateness of a pro-
cess model, but without any real attention being applied towards localizing the
main points of failure in an understandable manner.

In this chapter, we build upon the work developed in Chapter 3 to propose a
novel methodology to support real-time conformance analysis of event-based
data streams, which aims to provide an answer to the challenges listed above.
Our approach contributes to the current body of work in the following ways.
First, we apply state of the art process model decomposition techniques [180] to
split a large process model in a series of sub processes in order to gain a signif-
icant speed-up when verifying events. Second, by applying decomposition tech-
niques, localizing deviations and volatile parts of the process models becomes
more straightforward, allowing end-users to quickly gain an insight in which
parts of the current model are failing or being violated. Third, by combining
model decomposition techniques with a fast, event-granular replay technique,
we are able to perform the conformance analysis task in a real-time manner,
thus allowing for the monitoring of incoming events as they are being executed.
This is a strong contribution compared to earlier approaches [102–104, 108–112],
where conformance checking techniques assume that a full recorded event log
is available and where the actual analysis can be time-consuming.

The possible areas of application for our developed approach are manifold. In
light of recent �nancial crises, the importance of the ability to immediately re-
act to external shocks and unforeseen events has become more apparent than
ever. Real-time monitoring, fraud detection and governance, risk and compliance
(GRC) veri�cation, and trading system failure protection all provide suitable con-
texts to apply our proposed technique. We apply our technique on a case example
of a large bank transfer process to illustrate the validity of our contribution.

6.2 Preliminaries

This section provides an overview of preliminary de�nitions and concepts, as
well as an overview of related work.

CHAPTER 6. REAL-TIME CONFORMANCE ANALYSIS 215

6.2.1 Related Work

As we have discussed already before (see the introductory chapter), conformance
checking techniques are devoted to quantify the quality of a process model in de-
scribing an event log. In [99], a “�tness” metric is presented to describe the extent
to which event traces can be associated with valid execution paths in the pro-
cess model, and an “appropriateness” metric is proposed to assess whether the
process model describes the observed behavior accurately enough. The afore-
mentioned approach replays the traces of the log in the model to evaluate these
metrics. One of the drawbacks of this approach is that for undeterministic mod-
els, the heuristics used in the replay may lead to overestimating the metrics, due
to the arti�cial creation of super�uous tokens in the model. Several solutions
have been proposed to overcome this issue. Weidlich et al. propose a system
to check process model consistency based on “behavioral pro�les” [103]—which
can be derived in a straightforward and e�cient manner but with loss of some
granularity regarding the exact traces which can be accepted by the model at
hand. Adriansyah et al. propose an alternative approach where the concept of
“alignments” are introduced in order to match an event trace with a path through
the model as closely as possible [112].

In [180], various decomposition approaches to improve process discovery and
conformance checking tasks have been proposed. In [181], the notion of pas-
sages is used to decompose a process model and/or event log into smaller parts to
speed-up process discovery and conformance checking. This approach has been
generalized in [180] where it is shown that any event-granular process discov-
ery and conformance checking tasks can be decomposed as long as the di�erent
process fragments (i.e. the submodels) only share uniquely-labeled activities. We
apply this approach in this chapter, but utilize a Re�ned Process Structure Tree
(RPST) based decomposition method as outlined in [158, 182], as the hierarchical
topological structure provided by this decomposition allows to enable additional
analytical tasks not considered before, such as zooming in and out on various
parts of the process model being monitored.

Our methodology also bears similarities with the �elds of Complex Event Pro-
cessing (CEP) [148, 149] and Business Activity Monitoring (BAM) [183, 184].
Although these methodologies also support the (near-)real-time monitoring of
events, our approach di�erentiates itself in two ways. First, our approach stays
in the general realm of process mining by starting from a process model and com-
paring this against a stream of incoming events which can be related to several

216 6.3. METHODOLOGY

running process instances. Second, as we apply a decomposition strategy over
the given process model, this allows to immediately relate violations or discrep-
ancies to speci�c areas within this model, thus improving the localization of the
root-causes behind such deviations.

Our conformance analysis methodology is applicable on all process models on
which event-granular semantics can be de�ned and which can be meaningfully
decomposed into a series of submodels. We continue to apply Petri nets through-
out this chapter as the representational language for prescriptive process models.

6.2.2 De�nitions

The concepts of an event log, Petri net and Work�ow net are applied in this
chapter, similar as were de�ned in the introductory chapter. We also de�ne the
following additional preliminary de�nitions.

De�nition 6.1. Work�ow graph, System net, Full �ring sequence. Given a
Petri net PN = (P,T ,F) , the work�ow graph is de�ned as the structural directed
graphG = (V ,E) with V = P∪T and E = F. A system net is a triplet de�ned over
a given Petri net SN = (PN,mi,mo) where mi and mo de�ne the initial and
�nal markings of the Petri net, respectively. (PN,m1)[σ〉(PN,m2) denotes that a
sequence of transitions σ ∈ T is enabled and can be �red starting from marking
m1, resulting in marking m2. 2

De�nition 6.2. Event stream. For the purpose of our real-time conformance
analysis methodology, we de�ne an event stream ES = 〈e1,e2, . . .〉 as a sequence
(�nite or in�nite) of arriving events. Events e ∈ ES are expressed as a tuple
e = (id,act, time) with act : ES → AL a function denoting the activity for an
event, function time : ES→ R denoting the timestamp and function id : ES→ N

denoting the case identi�er. It is trivial to convert an event log L to an event
stream ES if a global order relation can be established over the recorded activities
in the event log (i.e. based on a timestamp) and vice versa. 2

6.3 Methodology

This section presents the developed real-time decomposed conformance analysis
approach. Figure 6.1 provides a schematic overview of the approach, which can
be split up in four phases, explained in the next subsections.

CHAPTER 6. REAL-TIME CONFORMANCE ANALYSIS 217

D
e
c
o
m

p
o
se

d
 R

e
a
l-tim

e
 C

o
n
fo

rm
a
n
c
e
 A

n
a
ly

se
r

A
ct1 : T

r1
 - M

o
d
el 1

 - M
o
d
el 4

 - M
o
d
el …

A
ct1 : T

r2
 - M

o
d
el 2

A
ct2 : T

r5
 - M

o
d
el 1

 - M
o
d
el 2

...

A
ctiv

ity
-T

ra
n
sitio

n
-

M
o
d
el M

a
p
p
in

g

...

T
h
read

 1

S
u
b
-m

od
el 1

S
u
b
-m

od
el 2

...

S
u
b
-m

od
el m

-1

T
h
read

 n

S
u
b
-m

od
el m

S
u
b
-m

od
el m

-2

W
o
rk

er T
h
rea

d
s

M
od

el 1

P
rIn

s 1 :
fin

ish
ed

... ...

M
o
d
el R

ep
lay

ers

P
rIn

s 2 :
ru

n
n
in

g

R
u
n
n
in

g
rep

lay
ers

activ
ity

 to tra
n
sitio

n
/

m
od

el/th
read

 m
ap

p
in

g

S
tatistics

A
ctio

n
T

rigg
er

R
ep

o
rtin

g &

V
isu

alizatio
n

p
o
ll

In
com

in
g

ev
en

t

E
v
en

t is rep
la

y
ed

 b
y

th
read

; a state list is
m

ain
tain

ed
 p

er p
rocess

in
stan

ce

D
ep

en
d
in

g
 on

 th
e n

a
tu

re an
d

n
u
m

b
er o

f v
iolatio

n
s

occu
rrin

g
, d

ifferen
t action

s
ca

n
 b

e trig
gered

: e.g. sen
d

w
arn

in
g
, sh

u
t d

o
w

n
 ru

n
n
in

g
in

stan
ce, sh

u
t d

o
w

n
 sy

stem
...

C
on

form
an

ce sta
tistics

are logg
ed

 w
h
ich

 ca
n
 b

e
u
sed

 in
 rep

orts a
n
d

v
isu

a
liza

tion
s

E
v
en

t is d
isp

a
tch

ed
 to

 a
ll

w
ork

er th
read

s h
an

d
lin

g
 a

su

b
-m

od
el con

tain
in

g a
tran

sition
 m

ap
p
ed

 to th
e

ev
en

t activity

Figure 6.1: Architectural overview of the developed real-time decomposed conformance
analysis technique.

218 6.3. METHODOLOGY

6.3.1 Phase 1: Decomposition

The �rst phase of the proposed methodology entails decomposition. Formally, the
overall system net SN = (PN,mi,mo) is broken down into a collection of sub-
nets {SN1,SN2, . . .SNn} such that the union of these subnets yields the original
system net SN =

⋃
16i6n SN

i. By means of decomposing the original model into
a set of subnets we aim to achieve the following goals. First, fragment the con-
formance problems into a set of more comprehensive semantic elements aiding
on the diagnosis. Second, restrict the possible pernicious e�ects of the heuris-
tics decisions taken during the conformance analysis (see Phase 3 below). Third,
speed-up the analysis compared with non-decomposed conformance checking
techniques.

Due to the �nal goal of analyzing conformance, not all possible decomposition
approaches are appropriate for this task. Only those valid decompositions that
preserve the conformance integrity should be considered [180]. That is, given
the original net and the decomposed version, the original net perfectly conforms
i� all the subnets in the decomposed setting perfectly conforms. In other words,
no conformance anomalies should be lost or introduced in the transition from
the overall model to the decomposed one. In [180], the authors de�ne a valid
decomposition—applicable on Petri nets—as the decomposition that satis�es the
following conditions:

1. Each arc of the overall net belongs to exactly one of the submodels, i.e.,F =⋃
16i6n F

iwhere Fi ∩ Fj = ∅ for 1 6 i < j 6 n.

2. Each place of the overall net belongs to exactly one of the submodels,
i.e.,P =

⋃
16i6n P

iwhere Pi ∩ Pj = ∅ for 1 6 i < j 6 n.

3. Silent transitions appears in precisely one of the subnets, i.e., ∀t ∈ T \

Tv(SN) : [|{1 6 i 6 n | t ∈ T i}| = 1] , where Tv(SN) stands for the set of
visible transitions (i.e., non-silent) of SN, i.e. Tv(SN) = {t ∈ T |µ(t) 6= s}.

4. Non-silent, duplicate transitions appear in precisely one of the subnets,
i.e., ∀t ∈ Tv(SN) \ Tuv (SN) : [|{1 6 i 6 n | t ∈ T i}| = 1], where Tuv (SN)

stands for the set of visible transitions with unique label (i.e., non-silent
and non-duplicate) of SN, i.e. Tuv (SN) = {t ∈ T |µ(t) 6= s∧ @x ∈ T : x 6=

t∧µ(x) = µ(t)}.

5. Non-silent, non-duplicate transitions may appear in multiple subnets, i.e.,
∀t ∈ Tuv (SN) : [|{1 6 i 6 n | t ∈ T i}| > 1].

CHAPTER 6. REAL-TIME CONFORMANCE ANALYSIS 219

STRR

RRS

RRR

RRD

FTRR... ...

Figure 6.2: ”Open and register transaction” SESE-component from the case example in
Figure 6.5. STRR and FTRR are the entry and exit boundary nodes of the SESE-component,
respectively. The rest of places and transitions are interior nodes of the SESE-component.

In other words, all the elements in the original Petri net model must belong to a
submodel, but only unique visible transitions can be shared among several sub-
models. In [180], the authors prove that any valid decomposition satisfying the
aforementioned conditions captures all the conformance problems of the overall
model, and not more, i.e., it preserves the conformance integrity.

In [158], an approach based on SESE-components (Single-Entry Single-Exit) is
presented, i.e. subgraphs in the work�ow graph de�ned over a system net having
single entry and exit boundary nodes [185]. The decomposition of the work�ow
graph of a Petri net into SESE-components is well-studied and provides a valid
means to perform process model decomposition. In addition, SESE-components
represent a well-de�ned and understandable part of the process model, with the
added bene�t that it is possible to de�ne a hierarchical structure among the model
fragments which allows to navigate through the di�erent levels of granularity,
so that a SESE-component perfectly re�ects the idea of subprocesses within the
main process. Figure 6.2 depicts an example SESE-component for the illustrative
case shown in Figure 6.4, obtained using the technique proposed in [158]. Note
that this techniques can be combined with a user-supervised post-processing step
in order to obtain components that better ful�ll the domain-aware monitoring.

6.3.2 Phase 2: Event Dispatching

Once a system net has been decomposed into a set of submodels, this collection
of models is passed to a central event dispatcher, which also serves to listen for
incoming events. For each submodels, it is examined whether it contains a tran-
sition t which maps to the incoming event e, i.e. ∃t ∈ T : µ(t) = act(e). If it

220 6.3. METHODOLOGY

does, this indicates that the event at hand should be replayed on this particu-
lar submodel (multiple such submodels can be found), and the event is passed
forward to this model fragment.

It is possible to decouple the “worker”-instances for each model fragment in a
distributed fashion, with each model fragment running on separate machines.
For the purpose of our prototype, we have implemented a multi-threaded archi-
tecture where a number of worker threads smaller than or equal to the number
of process fragments is spawned, with each worker thread overseeing the han-
dling of one or more process fragments. This approach allows for the concurrent
handling of event checking over the di�erent model fragments.

6.3.3 Phase 3: Replay

Once it is determined which process model fragment(s) should parse the incom-
ing event, the actual replay of this event on each such fragment is performed.
For each process model fragment, a state list is maintained denoting the current
marking reached by the currently-running process instances. When an event e
is queued for replay by a process fragment, the state linked to process instance
id(e) is progressed by investigating whether there exists an enabled transition
∃t ∈ T : [µ(t) = act(e) ∧ enabled(t)]. The outcome of this evaluation deter-
mines if the process model is showing discrepancies or not.

Some additional remarks should be provided at this point. First of all, we note
that we apply a heuristic, event-granular replayer similar to the one developed
in Chapter 3. The reasoning behind the choice to opt for a replayer playing the
token game instead of an alternative approach such as alignment or behavioral
pro�le based techniques [103, 112] are twofold:

1. First, alignment and behavioral pro�le based replayers perform their anal-
ysis on a trace, rather than event level, meaning that a complete process in-
stance needs to �nalize in order to align the log trace with a process model
transition sequence As we are dealing with event streams which need to
be analyzed in a real-time manner, an event-granular replay strategy is re-
quired. Additionally, the behavioral pro�le approach does not specify how
duplicate tasks can be dealt with.

CHAPTER 6. REAL-TIME CONFORMANCE ANALYSIS 221

2. Second, alternative approaches su�er from scalability issues which make
them unsuitable in a real-time context. Subsequently, the replay procedure
applied here is formalized in Algorithm 6.1.

A second remark entails the way decision points are resolved by the replayer. Put
brie�y, whenever multiple (enabled) transitions are mapped to the same event log
activity within a process model and/or whenever multiple invisible activities are
enabled, the replayer needs to determine which transition to execute to handle
the activity at hand. Note that—in extreme edge cases—it is possible that the
forced �ring of a non-enabled transition should be preferred if this avoids sev-
eral other violations later in the event trace, as we have seen in Chapter 3. In
Algorithm 6.1, the one-step look-ahead procedure would su�ce to resolve any
ambiguities, but since we are dealing with streaming event data in this context,
we possess no knowledge about events which will arrive in the future, preventing
the execution of the look-ahead procedure. We propose and have implemented
three methods to deal with this issue:

1. First, disabling the look-ahead altogether and assuming that the model is
deterministic enough to handle incoming events without taking the con-
text into account (n = 0 in Algorithm 6.1).

2. Second (another extreme), restarting the replay of the full trace each time
an event is added, thus allowing the replayer to revise earlier decisions
(n = |σL| in Algorithm 6.1). Note however that the replayer is con�g-
ured such that no new violations may be introduced related to historical
activities (¬conforms(e) ∨ ¬r). In practice, this means that the replayer
can revise the state chain by modifying the execution of silent transitions,
selecting alternative albeit also enabled transition mapped to a particular
activity for activities which were parsed correctly, or selecting alternative
disabled transition, although only for activities which were not parsed cor-
rectly (provided by function conforms in Algorithm 6.1).

3. The third method combines these two extremes by considering a part of
the executed transition sequence as “frozen”, only allowing revisions for
the last n steps.

As a last remark, note that the use of model-only moves in Algorithm 6.1 was
disabled, to bring the replayer more in line with a real-time conformance analysis
and monitoring context, where model-only moves are less appropriate.

222 6.3. METHODOLOGY

Algorithm 6.1 Real-time event replay algorithm.
Input: (P,T ,F),M0 % Given Petri net and initial marking
Input: e = (id,act, time) % Arriving event to be replayed (checked)
Input: σL % Trace of log activities having occurred so far for instance id(e)
Input: σ % Trace of model transitions being executed so far for instance id(e)
Input: m % Current marking of the model for instance id(e)
Input: conforms : σL → {True, False} % Function denoting conf. outcome previous event
Input: enabled : (T ×M)→ {True, False} % Function denoting if a transition is enabled under a given marking

(M is set of all possible markings)
Input: nextmarking : (T ×M)→M % Function returning the marking after (force) �ring a given transition in

a given marking
Input: random : (T ′ ⊆ T)→ T % Function returning random transition from a given set of transitions
Input: µ : T →AL ∪ (s,b) % Mapping function between model and log
Input: n := 0 % Number of steps to revise in historic trace (default: 0, i.e. none)
Input: r := False % Denoting whether event being replayed is a revised historic event
Input: en := ∅ % Next incoming event (optional; used when revising earlier decisions)
Output: Executed transition t

1: function ReplayEvent(SN, e, en , σL , σ,m, n, r)
2: % Handle revision of historic decision
3: if ¬r∧n > 0 then
4: % Remove last n items from σ and revert markingm to earlier state
5: σ := 〈σ1 , . . . ,σ|σ|−n〉,m :=mearlier
6: for all i ∈ 〈(n− 1), . . . , 0〉 do
7: ReplayEvent(SN, σL

|σL|−i
, σL

|σL|−i+1
, σL , σ,m, n, True) % Revise history

8: end for
9: end if

10: % Construct candidate transition sets
11: MT := {t ∈ T |µ(t) = act(e)}, ET := {t ∈ T |enabled(t,m)}
12: IT := {t ∈ T |µ(t) = ai}
13: CET := {t ∈ T |∃tn ∈ T : [µ(tn) = act(e)∧ enabled(tn ,nextmarking(t,m))]}
14: NET := {t ∈ T |∃tn ∈ T : [µ(tn) = act(en)∧ enabled(tn ,nextmarking(t,m))]}
15: % Determine transition to �re
16: if |MT ∩ET ∩NET | > 0 then
17: t := random(MT ∩ET ∩NET)
18: else if |MT ∩ET | > 0 then
19: t := random(MT ∩ET)
20: else if |IT ∩ET ∩CET | > 0 then
21: t := random(IT ∩ET ∩CET)
22: else if |MT ∩NET | > 0 then
23: t := random(MT ∩NET)
24: else if |MT | > 0 then
25: t := random(MT)
26: else if |IT ∩CET | > 0 then
27: t := random(IT ∩CET)
28: end if
29: σ := 〈σ, t〉,m := nextmarking(t,m)
30: if t ∈ IT then
31: ET := {t ∈ T |enabled(t,m)}
32: t := random(MT ∩ET)
33: m := nextmarking(t,m)
34: end if
35: if ¬r then
36: σL := 〈σL ,e〉
37: end if
38: return t
39: end function

CHAPTER 6. REAL-TIME CONFORMANCE ANALYSIS 223

As a third remark, recall that it was mentioned in Subsection 6.2.1 that one of
the drawbacks of “token game”-based replayers entails the possible creation of
super�uous tokens, enabling subsequently for too much behavior. However, as
was mentioned in the description of Phase 1, we note that the decomposition of a
process model restricts the possible pernicious e�ects of the heuristics decisions
taken during the conformance analysis, as each model is now limited to dealing
with a smaller subset of behavior. In addition, as super�uous tokens are created
following the forced �ring of violating activities, the process instance or model
fragment at hand is likely to be immediately indicated as “dubious” at this point,
lowering the trustfulness of following events within this instance of model frag-
ment, independent of the replay strategy being applied. In addition, recall that
we are applying a hierarchical decomposition strategy, so that it is possible to
perform the actual replay at a lower-granularity level than the visualization and
reporting.

6.3.4 Phase 4: Reporting and Visualization

The �nal phase consists of reporting and visualization. Remark that, naturally,
these actions can be performed while the actual conformance analysis is run-
ning. In general, two ways of result follow-up are supported by our architecture.
The �rst one consists of the logging of various statistics by the running worker
threads and replayers, which is polled regularly by decoupled components (e.g.
a real-time dashboard or perhaps logged to a persistent data store). The second
manner by which results can be interpreted consists of the de�nitions of vari-
ous triggers which are to be �red once certain criteria are met, such as a model
fragment overshooting a certain error rate threshold, for instance, of a high-risk
activity or model fragment being violated. The actions which can be undertaken
as a result are self-explanatory, e.g. sending warnings, or halting running process
instances or even the complete system.

6.3.5 Implementation

Figure 6.3 depicts a screen capture of our developed proof-of-concept implemen-
tation is shown. In the prototype, events are streamed over a network in real-time
using a separate program (shown as the top left window in Figure 6.3), which
are received by the conformance analyzer and veri�ed against the decomposed

224 6.3. METHODOLOGY

Figure 6.3: Screen capture of the developed real-time event conformance analysis proto-
type. A global overview of the model being checked against, error rates per submodel, and
general statistics are reported. Our real-time approach allows to immediately react once
a certain (user-con�gurable) criteria are triggered, such as model fragments (or speci�c
activities) reaching a certain failure threshold.

model fragments. The top panel displays a global overview of the model being
checked against, with violating parts highlighted. Since the analysis is performed
on the basis of the decomposed model fragments, it is more straightforward to
pinpoint errors to a localized area within the global view than when using the
full model as-is to perform conformance analysis. The lower left panels depict
error monitors per submodel, showing the error rate for each model fragment
over time. The panel on the right shows general statistics and program informa-
tion. Note that this real-time approach allows to immediately react once a certain
(user-con�gurable) criteria are triggered, such as model fragments (or speci�c ac-
tivities) reaching a certain failure threshold., and shows the error rate for each
model fragment together with a global overview for the complete process model.

CHAPTER 6. REAL-TIME CONFORMANCE ANALYSIS 225

open and
register

transaction
check
sender

process
cash

payment

process
cheque

payment

process
electronic
payment

check
receiver

transfer
money

notify and
close

transaction

Figure 6.4: High level overview of the running example process, structured in subpro-
cesses.

6.4 Case Example

In this section we propose the study of a realistic process case example in order
to illustrate the approach presented in this chapter and its bene�ts.

6.4.1 Description

The modeled process describes a realistic transaction process within a banking
context. The process contains all sort of monetary checks, authority noti�ca-
tions, and logging mechanisms responding to the new degree of responsibility
and accountability that current economic environments demand. The process is
structured as follows (Figure 6.4 shows a high-level overview of the complete pro-
cess): it is initiated when a new transaction is requested, opening a new instance
in the system and registering all the components involved. The second step is to
run a check on the person (or entity) origin of the monetary transaction. Then,
the actual payment is processed di�erently, depending of the payment modality
chosen by the sender (cash, cheque and payment). Later, the receiver is checked
and the money is transferred. Finally, the process ends registering the informa-
tion, notifying it to the required actors and authorities, and emitting the corre-
sponding receipt.

The process has been modeled in terms of a Petri net. The decomposition tech-
niques based on SESE-components (see Section 6.3) is used to decompose the
overall model into suprocesses. In particular, a valid decomposition where com-
ponents have size at most 60 is derived. Finally, the decomposition is post-
processed by merging some of the SESE-components in order to reach the �nal
decomposition shown in Figure 6.5 (which depicts the full process): eight of the

226 6.4. CASE EXAMPLE

proposed subnets correspond with the eight subprocesses identi�ed in Figure 6.4
(represented within gray rectangles), and the ninth subnet contains all the trivial
connections between suprocesses (represented outside the rectangles).

6.4.2 Experimental Scenario Evaluation

To illustrate the bene�ts of the technique, we present two possible scenarios
within the case example process.

6.4.2.1 Scenario 1: Serial Number Check

The modeled process de�nes that, whenever a client executes the payment in
cash, the serial numbers must be checked (see Figure 6.4). The banking regula-
tion states that serial numbers must be compared with an external database gov-
erned by a recognized international authority (“Check Authority Serial Numbers
CASN”). In addition, the bank of the case example decided to incorporate two
complementary checks to its policy: an internal bank check (“Check Bank Serial
Numbers CBSN”), and a check among the databases of the bank consortium this
bank belongs to (“Check Inter-Bank Serial Numbers CIBSN”). At a given point,
due to technical reasons (e.g., peak hour network congestion, malfunction of the
software, deliberated blocking attack, etc.), the external check CASN is not longer
performed, contradicting the modeled process, i.e., all the running instances of
the process involving cash payment can proceed without the required check.
Using the proposed approach, this situation is detected immediately, identifying
the anomalous subprocess (process cash payment), focusing the conformance
analysis on it, and eventually taking the necessary countermeasures. The conse-
quences of detecting such cases only in forensic analysis performed months after
the incident are severe and di�cult to recover from. The situation is depicted in
Figure 6.6.

6.4.2.2 Scenario 2: Receiver Preliminary Pro�ling

During the check receiver stage, the model establishes two steps to be performed
sequentially: �rst, a preliminary pro�ling analysis (“Start Receiver Pre Pro�ling
SRPP”) is executed over the receiver in order to evaluate and establish its poten-
tial risk (“Evaluate Pre Pro�ling EPP”). Only then, a complete background check

CHAPTER 6. REAL-TIME CONFORMANCE ANALYSIS 227

S
R
P
P

R
B
P
C

R
IB
P
C

R
E
P
C

F
R
P
P

S
R
P

R
E
P
P

E
P
P

S
H
R
R
P

S
LR
R
P

LR
IR
V

LR
E
R
V

LR
R
R

F
LR
R
P

S
H
R
R

P
C

M
H
R
R

P
C

A
H
R
R

P
C

F
H
R
R

P
C

R
H
R
R

P
C

H
R
R
A
N

H
R
H
A

H
R
R
R

F
H
R
R
P

F
R
P

S
T
T

S
E
T

S
IT

C
IT

R
G
IT

R
IT

C
D
D

D
N
D

E
T

C
E
T

R
E
T

R
G
E
T

F
IT

F
E
T

F
T
T

S
C

S
R
C
P

E
R

P
R

E
S
R

G
P
R

F
R
C
P

R
T
C

R
A
T
C

N
A
T
C

F
C

F
C

F
T

F
T
T

S
C

F
R
P

S
T
T

F
T
R
R

S
S
A

S
T

S
T
R
R

S
T
R
R

R
R
S

R
R
R

R
R
D

F
T
R
R

S
S
A

C
S
P
ID

C
S
B
ID

R
B
ID

S
C
U
C

G
B
ID

LC
S
H

LC
S
P

A
B
ID

H
C
S
H

H
C
S
P

N
S
A

F
C
U
C

R
N
C

R
O
C

F
S
A

S
A
P
P

R
A
P

C
A
P
R

U
R
A
P

A
R
A
P

P
B
A
P

E
C
P
R

S
A
V

B
A
V

A
A
V

F
A
V

C
A
P
A

R
C
A
P

F
A
P
P

S
C
H
P
P

M
C
A

A
C
A

S
C
H
C

C
B
C
H

S
N

C
IB
C

H
S
N

C
A
C
H

S
N

F
C
H
C

P
C
H

E
C
H
R
R

C
C
H
R
A

F
C
H
P
P

R
C
H

F
C
P
P

F
A
P
P

F
C
H
P
P

F
P
P

S
R
P

F
S
A

S
P
V

S
C
P
P

S
A
P
P

S
C
H
P
P

S
C
P
P

C
C

A
C

C
IB
S
N

C
B
S
N

C
A
S
N

C
P
C

E
C
R
R

C
C
R
A

R
C
C
P

F
C
P
P

...

...

O
pen and register

transaction
C

heck sender

P
rocess cash paym

ent

P
rocess cheque paym

ent

P
rocess electronic paym

ent

C
heck receiver

T
ransfer m

oney
N

otify and close transaction

Figure 6.5: Running example: �nal valid SESE-decomposition. The substructures are
named according to Figure 6.4.

228 6.4. CASE EXAMPLE

SCPP CC AC

CBSN

CIBSN

CASN ⚠

CPC

CCRA

ECRR

RCCP FCPP

Figure 6.6: In the �rst scenario, the Check Authority Serial Number (CASN) activity is
skipped for some process instances, causing the CPC activity to fail, due to a missing input
token which was expected to be present and placed there by the execution of CASN. The
�gure depicts the error localized in the a�ected model fragment; the graph depicts the
cumulative and running amount of violations detected within this fragment.

is performed over the receiver, where this check can either be more casual (“Start
Low Risk Receiver Processing SLRRP ”) or thoroughly (“Start High Risk Receiver
Processing SHRRP”) depending on the potential risk detected on the preliminary
pro�ling. However, the presence of an inexperienced bank employee, malev-
olence, or simply a bad implemented bank evaluation protocol, could result in
evaluating the receiver with an un�nished preliminary pro�le check. The situa-
tion is depicted in Figure 6.7.

6.4.3 Experimental Comparison

To benchmark the performance of our developed real-time conformance analy-
sis technique against related approaches, a �tting event log was generated (based
on the model depicted in Figure 6.5) containing ten thousand process instances
(678864 events). A non-conforming (“noisy”) variant of this event log was pro-
duced by inducing noise (inserting, deleting, and swapping of events) so that 10%
of the included events are erroneous.

CHAPTER 6. REAL-TIME CONFORMANCE ANALYSIS 229

SRP

SRPP

RIBPC

REPC

RBPC

FRPP ⚠

REPP

EPP ...

Figure 6.7: In the second scenario, the preliminary pro�le check for receivers is skipped
(SRPP to FRPP), causing either the REPP or EPP activities to fail. The �gure depicts the
error localized in the a�ected model fragment; the graph depicts the cumulative and run-
ning amount of violations detected within this fragment.

We compare our proposed technique with the alignment based replay technique
by Adriansyah et al. [108–112] as well our original implementation of the token-
game based heuristic replayer (see Chapter 3). Both the non-decomposed and
decomposed variants of these techniques were included, applying hereto the
methodology as described in [182].

Figure 6.8 depicts the performance results of the experiment, showing the amount
of time taken (x-axis) to check the conformance of the included event logs (the
y-axis represents the cumulative ratio of event checks performed). As can be
seen, our proposed real-time conformance analysis technique performs com-
petitively with respect to related techniques. During the experimental run, a
maximum throughput rate (number of events checked per second) was reached
at 35000 with the experiment running on a single consumer laptop with three
worker threads. Some additional remarks should be provided however when
interpreting Figure 6.8. First, note that our proposed technique performs a con-
formance check on an event-granular basis, whereas the other techniques do so
on a trace-granular level (i.e. a complete trace should be provided to perform the
replay procedure). However, the event log is of su�cient size so that a step-wise

230 6.4. CASE EXAMPLE

Figure 6.8: Comparison of replay performance for the included techniques in the experi-
mental setup, showing the time taken per technique to replay the given event log.

CHAPTER 6. REAL-TIME CONFORMANCE ANALYSIS 231

e�ect is not apparent in Figure 6.8. Second, the replay procedure of the existing
techniques was modi�ed such that each trace is checked independently of the log
context, meaning that no distinct trace grouping is performed over the log and
each trace is checked as if it were belonging to an event log containing only this
trace, so as to better assess the performance of these techniques in a real-time
scenario (where the complete trace and log are unknown as events are arriving),
rather than a post-hoc scenario where the complete event log is provided as-is.
Note that—for the alignment based technique—this causes the non-decomposed
version to perform better than the decomposed one. This is a perhaps unex-
pected result, but is caused by the fact that the alignment based techniques are
geared towards checking—and as such expect—event logs as a whole. We thus
emphasize the fact that these techniques have—currently—not been optimized to
be applied in a real-time scenario (with an event stream being checked instead
of an historical log).

6.5 Conclusions and Future Work

In this chapter, we have presented a novel business process conformance analy-
sis technique which is able to support real-time monitoring of event-based data
streams. Our approach o�ers a number of novel contributions, most notably a
speed-up compared to related techniques, the ability to localize discrepancies
and allowing real-time monitoring and thus rapid response times in mission-
critical or high-risk environments, which is a signi�cant bene�t compared to
existing conformance checking techniques which mainly work in an o�ine man-
ner. Possible future lines of research include: streamlining visualization and re-
porting capabilities of our prototype, incorporating other decomposition and re-
play strategies, and adapting the framework into a distributed implementation,
where di�erent replayer engines run on separate machines.

232 6.5. CONCLUSIONS AND FUTURE WORK

233

Chapter 7

Explaining Clustered Process Instances

“I think you can have ten thousand explanations for failure,
but no good explanation for success.”

– Paulo Coelho

7.1 Introduction

This chapter describes SECPI (Search for Explanations of Clusters of Process In-
stances), an algorithm that is capable of �nding a minimal set of control-�ow
characteristics for a clustered process instance.

Partitioning event logs into multiple groups of process instances is a convenient
recipe for addressing the challenge of dealing with complex event logs, i.e. logs
presenting a large amount of distinct process behaviour. In the literature, several
trace clustering techniques have been described [62, 186–193] that are capable
of intelligently splitting up an event log into multiple groups of instances so that
process discovery techniques can be applied to subsets of behavior, with more
accurate and comprehensible discovered models as a result. However, the appli-
cation potential of trace clustering techniques is somewhat hampered by the low
level of human understandability. Concretely, there exist two major problems re-
garding trace clustering solutions. First of all, it is a non-trivial question to �nd
out what the driving elements are that determine a clustering technique to split

234 7.1. INTRODUCTION

up the event log in a particular way. This is because most trace clustering tech-
niques operate at a higher level of abstraction which makes that, for instance, the
concept of distance between traces is not very insightful as a means to describ-
ing a clustering solution. Secondly, end users would like to be able to understand
the di�erentiating characteristics between multiple clusters of process instances,
preferably from a domain perspective, i.e. relying on control-�ow characteristics
that are present in the context of the process at hand.

A posteriori comprehension of a clustering solution plays a vital role for the
usefulness of separating an event log into multiple subgroups. More speci�cally,
process analysts should be able to understand which factors determine the delin-
eation of the discovered clusters in order to be able to give an interpretation to the
solution. Currently available trace clustering techniques often lack the capability
to provide insight into how a certain clustering solution is composed. Therefore,
this chapter presents a new technique which allows to �nd explanations that
describe which control-�ow characteristics of a certain process instance make
that this instance pertains to a certain cluster. In the remainder of this chapter,
it is argued that instance-level explanations can overcome drawbacks of poten-
tial alternative explanation techniques, such as for example the visual analysis of
the underlying process models. The novel technique, implemented as a plugin in
ProM, is inspired by the work of Martens and Provost [194, 195], who put forward
an approach for explaining text document classi�cations. In the context of docu-
ment classi�cation, one is often confronted with limited comprehensibility of the
predictive model, even despite using so-called white box techniques such as deci-
sion trees or logistic regression, which is mainly due to the high dimensionality.
Similarly, such high dimensionality comes into play when characterizing process
instances by means of binary vectors representing control-�ow characteristics.

Against this background, the contribution we present in this chapter is SECPI
(Search for Explanations of Clusters of Process Instances), an algorithm that is
capable of �nding a minimal set of control-�ow characteristics for a process in-
stance, such that if these characteristics were not present, the process instance
would not remain within its current cluster. Furthermore, the implementation
allows to visualize explanations in the respective process models so that users
can easily observe what characteristics make that a process instance belongs to
a certain cluster. In the experimental evaluation, it is shown that our technique
strikes a better balance between accuracy and comprehensibility, as compared
to conventional white box classi�cation models. The technique presented in
this chapter is not only valuable for providing a solution for interpreting trace
clustering solutions, SECPI can be advantageous in the case of domain-relevant

CHAPTER 7. EXPLAINING CLUSTERED PROCESS INSTANCES 235

splits of an event log. More speci�cally, because the technique is capable of �nd-
ing discriminating factors between groups of process instances, we can discover
control-�ow explanations for groups of process instances as de�ned by some
exogenous criterion. For instance, we might investigate what control-�ow char-
acteristics discriminate between cases that were completed in time versus cases
that transgressed the allowed time frame. Another example case is �nding ex-
planations for cases going over the allowed budget vs. cases that remain within
budget.

7.2 Trace Clustering

Trace clustering is an interesting approach to deal with the problem that many
event logs contain an extensive amount of distinct behavior (i.e. process vari-
ants), because it allows the user to split up a log so that multiple distinct models
can be learned to describe the underlying business process.

7.2.1 State of the Art

Table 7.1 provides an overview of the most important currently available trace
clustering techniques. Several currently available trace clustering techniques
translate the learning problem into a propositional setting by converting an event
log into an attribute-value data set, to which well-known clustering techniques
such as k-means or hierarchical clustering can be applied. The pioneering study
by Greco et al. [62] proposes a projection of the traces onto a set of suitable fea-
tures, in this case a set of frequent k-grams of activity sequences. The projection
of an event log onto a feature set was further explored by Song et al. [186]. Their
trace clustering implementation allows for a multitude of pro�les to determine
the vector associated with each process instance. As such, they de�ne activity,
transition, performance, case attribute pro�les, etc. Furthermore, whereas Greco
et al. relied on k-means, Song et al. provide a full range of distance metrics and
clustering algorithms. Recently, the use of dimensionality reduction techniques
was investigated in the context of pro�le-based trace clustering [192]. Along
the same line of reasoning, Bose and van der Aalst [189] propose two additional
trace clustering techniques. In [196], the authors re�ne the technique of Greco et
al. [62] by making use of so-called conserved patterns (e.g. Maximal, Super Max-
imal, and Near Super Maximal Repeats) as projection features. The implemen-
tation applies hierarchical clustering instead of k-means. In [188], Bose and van

236 7.2. TRACE CLUSTERING

Table 7.1: Available trace clustering techniques and their characteristics.

Author Data
Representation

Clustering Techniqe Clustering Bias

Greco et al. [62] propositional k-means instance similarity:
alphabet k-grams

Song et al. [186] propositional various instance similarity: pro�les
Ferreira et al. [187] event log �rst order Markov mixture

model by EM
maximum likelihood

Bose and van der Aalst [189] bag of strings hierarchical clustering instance similarity: string
edit distance

Bose and van der Aalst [196] propositional hierarchical clustering instance similarity:
conserved patterns

Folino et al. [190] event log enhanced Markov cluster
model

maximum likelihood

De Weerdt et al. [191] event log active model-driven
clustering

combined process model
�tness

Ekanayake et al. [193] propositional various similarity and model
complexity

der Aalst turn away from the use of an attribute-value feature space, but instead
regard log traces as strings over the alphabet of task labels and as such calculate
the distance between traces directly by exploiting the idea of a string edit dis-
tance. However, in contrast to contemporary approaches such as the Levenshtein
distance [197], speci�c substitution, insertion and deletion costs are derived so as
to take into account characteristic features of an event log, such as concurrency
of tasks. A second class of trace clustering techniques can be best described as
model-driven. Inspired by the work of Cadez et al. [198] in the area of web usage
mining, Ferreira et al. [187] propose to cluster sequences by learning a mixture of
�rst-order Markov models using the Expectation-Maximization (EM) algorithm.
This technique has been applied in [199] to server logs. Also in [190], Folino et
al. make use of Markov chain clustering. Finally, De Weerdt et al. [191] propose
the ActiTraC-algorithm, which strives to optimize the combined �tness of the
underlying process models.

7.2.2 Problem Statement

As indicated in the introduction, the problem with existing trace clustering tech-
niques is that they provide little to no insight into the actual reasoning of par-
titioning an event log in a particular way. From a model learning perspective,
the clustering bias of a trace clustering technique determines how a solution is
constructed. As shown in Table 7.1, the clustering techniques described in the
process mining literature employ a wide variety of clustering biases. On the one
hand, a subset of techniques relies on the concept of distance as a measure of in-
stance similarity. Model-driven techniques on the other hand rely on maximum

CHAPTER 7. EXPLAINING CLUSTERED PROCESS INSTANCES 237

likelihood or �tness optimization. Observe that the ex-post, aggregated �tness of
the underlying models is an often employed quality measure for trace clustering
solutions, see [188, 191].

For distance-based clustering, typical data mining techniques such as k-means
or hierarchical clustering are applied. As such, the distance itself is a potential
candidate for explaining a clustering result. For instance, one could visualize the
instances in a networked graph or make use of comparative statistical analysis
of the underlying variables that determine the inter and intra-cluster distances.
However, a projection of process instances onto process features will typically
generate a large amount of variables (e.g. the combined number of 2- and 3-
grams for a set of twenty labels is 8400), which seriously complicates such an
approach. To this, it should be added that due to the large amount of variables,
distance-based techniques su�er from the curse of dimensionality problem [200].
As described in [201], conventional proximity metrics in high-dimensional space
may not be qualitatively meaningful. Therefore, it is argued that the value of the
distance concept for providing human understanding to a trace clustering solu-
tion is low. As for model-driven techniques, the natural explanation method is a
visual analysis of the resulting cluster models. In the next section, it is explained
why a visual analysis of the underlying process models of a clustering result is
often insu�cient.

Moreover, from a user’s perspective, one would like to explain di�erences be-
tween clusters according to context-speci�c process characteristics. Distances
between processes instances or basic comparative statistics are not capable of
doing so. Despite their distinct clustering biases, these techniques are not ca-
pable to indicate what characteristics di�er among clusters, nor do they show
why instances are part of a certain cluster or not. Typically, the concept of a
“distance” provides the user with some insight regarding the formed clusters.
For vectors representing process traces, the concept of distance is much less in-
tuitive because it always relies on some choice of features and often the set of
features is large. Another often employed approach to assess the di�erences be-
tween clusters is the computation of simple comparative statistics of the di�erent
variables. For trace clustering techniques operating at a propositional level, such
an approach might provide some insight into the cluster di�erences. Neverthe-
less, typically thousands of features are considered to “propositionalize” an event
log. Accordingly, it seems impossible that such a simple method could actually
describe di�erences between clusters very well. To this, it should be added that
multiple clustering algorithms don’t use a projection onto a vector space which
basically means that you don’t have actual variables to compare clusters with. So

238 7.3. ALTERNATIVE CLUSTER EXPLANATION TECHNIQUES

either because of the nature of the clustering algorithm or because of an explo-
sion of the number of features, it is a challenge to �nd out the key di�erentiating
factors between clusters of process instances.

7.3 Alternative Cluster Explanation Techniques

Before outlining our instance-level cluster explanation approach in the next sec-
tion, six alternative techniques, potentially useful for cluster explanation, are
explored. These approaches can be described as global explanation methods be-
cause they seek to provide human understanding from a general viewpoint, i.e.
aggregating over the entire set of process instances.

7.3.1 Visual Analysis of the Process Models

The most obvious method for obtaining human understanding of a trace cluster-
ing result is a visual comparative analysis of the underlying discovered process
models. However, several drawbacks exist regarding such an approach. First of
all, identifying dissimilarities between two process models often requires a high
level of expertise, and is even further complicated by the fact that di�erences
have to be identi�ed for a set of process models. In addition, since these mod-
els are discovered, they might still remain large and complex, thus di�cult to
interpret. Second, process discovery techniques generalize by making a trade-
o� between recall, precision, generalization and simplicity and accordingly do
not always represent the behavior in the cluster perfectly, which might further
obfuscate di�erences between clusters. Moreover, the trade-o� between qual-
ity dimensions di�ers according to the process discovery algorithm used, so that
the resulting behavior might vary depending on the chosen technique to learn
a visual model. Finally, because these models stem from the same process con-
text, di�erences might reside in very subtle elements, di�cult to identify visually.
Therefore, the visual inspection of the underlying discovered process models will
often be a time-consuming and inaccurate method for cluster explanation.

7.3.2 Process Model Similarity Metrics

A second solution for cluster characterization is the use of automated similar-
ity analysis techniques for business process models. There exists an extensive

CHAPTER 7. EXPLAINING CLUSTERED PROCESS INSTANCES 239

body of literature on the behavioral equivalence of process models [202, 203].
However, common notions such as trace equivalence and (branching) bisimula-
tion [204] only provide the user with a strict true or false answer, as pointed out
in [205], which makes them inapplicable to our context. Other researchers have
proposed more �ne-grained similarity metrics for comparing business process
models, which potentially suit better the problem at hand. For instance, Alves
de Medeiros et al. [206] propose a recall and precision metric to quantify process
model similarity based on observed behavior. Yet, several factors a�ect the suit-
ability in the context of cluster explanation negatively. First, perfect precision
and recall values, i.e. both equaling 1, do not guarantee behavioral equivalence.
It is also unsure which common event log to use for comparison, because the
original complete log will not �t the models underlying the clusters well. Ob-
serve that imperfect �tness and a mismatch between tasks in the log and in the
model will severely impact the interpretation of the precision and recall values.
Finally, the technique has two more general disadvantages, which also applies to
other process model similarity quanti�cation approaches (e.g. [207]): �rst, they
are not capable of providing insight into the root causes of dissimilarity and sec-
ond, the user is faced with an increased comparative complexity as soon as more
than two clusters are present in a solution as each cluster should be compared
separately to every other cluster.

7.3.3 Automated Dissimilarity Visualization in Process Models

As a third potential alternative cluster explanation technique, Dijkman proposed
a process similarity technique that is capable of returning the exact positions of
di�erences between two process models [208] by means of typology of process
model di�erences de�ned in [209]. This technique has the advantage to be ca-
pable of identifying root causes of process model di�erences. Observe however
that the technique is designed to diagnose Event-Driven Process Chains (EPCs).
Furthermore, the technique has exponential complexity and can only compare
two models at a time.

7.3.4 Footprints and Behavioral Pro�les

The behavioral similarity metric in [207] is founded on the concept of causal
footprints [210]. Despite the fact that the metric itself is not useful for our pur-
pose, the technique of footprint comparison is a potential candidate for �nding

240 7.3. ALTERNATIVE CLUSTER EXPLANATION TECHNIQUES

trace cluster explanations. It can be regarded as a technique to abstract away
from interpreting and comparing control-�ow behavior of process models, by
means of providing insight into causal relations. As such, they might help a
user to identify di�erences more easily. For model-based footprints, the issue
of abstraction by discovery remains: the discovered model might obfuscate dif-
ferences between clusters. Other researchers have proposed similar concepts to
compare process models, most notably behavioral pro�les [103] and transition
adjacency relations [211]. It is pointed out that the abstraction by discovery issue
might be resolved by deriving footprints from the clustered logs instead of the
process models. For instance, dissimilarities can be visualized by aggregating all
instance-level pro�les of two clusters into a log-level matrix for each cluster. Be-
cause this is a data �rst approach, no discovered model is required to construct
such matrices. However, with a growing activity alphabet, these matrices can
quickly become di�cult to interpret. In addition, the comparison of more than
two clusters becomes unwieldy as well, requiring a batch-style pairwise analy-
sis. This might seriously complicate the task of explaining clusters of process
instances.

7.3.5 White Box Classi�cation Model Learning

As a �fth potential cluster explanation technique, white box classi�cation tech-
niques could be employed. In fact, this approach corresponds to a reverse en-
gineering of conventional trace clustering techniques where process instances
are projected onto feature vectors. One could apply rule learning or decision
tree algorithms to a data set obtained by combining the feature vectors and the
cluster identi�er. As such, a classi�cation model can be learned that explains
why process instances belong to a certain cluster. White box classi�cation tech-
niques such as RIPPER [132] and C4.5 decision trees [212] have been shown to be
useful in the process mining domain, e.g. in [29, 213]. However, the usefulness
of such classi�cation models is determined by two important parameters. First
of all, the model should present a high classi�cation accuracy so as to be valid.
Furthermore, the model should be comprehensible for end users. In Section 7.5,
an experiment is presented comparing white box classi�cation techniques to our
newly proposed algorithm.

CHAPTER 7. EXPLAINING CLUSTERED PROCESS INSTANCES 241

7.3.6 Cross-Cluster Conformance Checking

The last potential alternative technique for providing human understanding to
a trace clustering solution is the use of conformance checking. In this particular
case, one could rely on cross-cluster model-log alignment for identifying di�er-
ences between clusters. By aligning or replaying an entire cluster log with the
di�erent process models underlying the other clusters in the clustering solution,
it is feasible to visualize di�erences at a global level. However, cross-cluster con-
formance checking can also be performed on an instance-level basis, investigat-
ing the di�erent alignments or replay outcomes of one particular instance with
the discovered process models underlying the other clusters. Although both the
use of instance-level as well as global cross-cluster alignments has the potential
to reveal di�erences between clusters of process instances, one notable downside
is the mandatory use of the discovered process models for �nding explanations.
Our novel approach avoids the use of the underlying discovered process models
and solely relies on the data (i.e. the process instances) in the clustered logs. Ob-
serve that pure trace alignment [214] also avoids the use of models, however, it
is unsure how this particular technique can be applied to multiple event logs at
once.

7.4 Instance-Level Explanations with SECPI

We present a completely new analysis approach for explaining the di�erences
between clusters of process instances, overcoming many of the drawbacks of
alternative techniques. The basic idea is shown in Figure 7.1. Instead of pro-
viding a global explanation, concise if-then rules are learned for each individual
instance, with a conjunction of control-�ow characteristics (e.g. “sometimes di-
rectly follows”-relations) forming the antecedent and the cluster switch as con-
sequence. As such, an explanation is a rule that stipulates which characteristics
are the determining factors that make that a certain instance pertains to its cur-
rent cluster. Experiments presented in the next section show that we can learn
accurate and concise explanations.

7.4.1 Constructing the Data Set

First, process instances are converted into feature vectors. The implementation
supports several attribute templates (e.g. activity presence, always/sometimes

242 7.4. INSTANCE-LEVEL EXPLANATIONS WITH SECPI

P
ro

ce
ss

 m
o
d
el

 (
d
ep

en
d
en

cy
 g

ra
p
h
)

o
f

th
e

p
re

d
ic

te
d
 c

lu
st

er
 (

C
lu

st
er

2
)

P
I 0

2

E
x
p
la

n
a
ti
o
n
 1

E
x
p
la

n
a
ti
o
n
 2

E
x
p
la

n
a
ti
o
n
 3

E
x
p
la

n
a
ti
o
n
 k

..
.

E
v
en

t
lo

g

T
ra

ce
 c

lu
st

er
in

g
S
V

M
 E

x
p
la

in
er

P
ro

ce
ss

 m
o
d
el

 (
d
ep

en
d
en

cy
 g

ra
p
h
)

o
f

th
e

cu
rr

en
t

cl
u
st

er
 (

C
lu

st
er

1
)

S
ta

rt
A

B

C

D

E
n
d

E

S
ta

rt
A

C

B

D

E
n
d

E

E
x
p
la

n
a
ti

o
n
 1

 f
o
r

P
I 0

2
:

IF

S
o
m

et
im

es
D

ir
ec

tl
y
F
o
ll
o
w

s(
C

,E
)

=
 0

T

H
E

N
C

lu
st

er
2

P
I 0

1

P
I 0

2

P
I 0

3

P
I 0

4

P
I 0

5

P
I 0

6
P

I n

Cluster1 Cluster2 Clustern

P
I 0

1








P
I 0

2








P
I 0

3








P
I 0

4








P
I 0

5








P
I 0

6








..
.

P
I n









Figure 7.1: Overview of SECPI: for each process instance (PI) in the event log, one or more
explanations are learnt and ranked according to their length. An explanation is a simple
if-then rule with a conjunction of characteristics (as few as possible) which should not be
present (i.e. set to zero) in order for the instance to rather belong to a di�erent cluster. The
SECPI implementation is capable of visually re�ecting these key determinants of cluster
membership in the respective process models, as illustrated on the right hand side.

CHAPTER 7. EXPLAINING CLUSTERED PROCESS INSTANCES 243

weak order relations), however our experiments show that the “sometimes
directly follows” attribute template provides solid explanatory power from a
control-�ow perspective. The SometimesDirectlyFollows(a,b) attribute for two
activities a and b evaluates to true when these two activities both occur in the
instance (potentially multiple times) and follow each other directly at least once,
and to false otherwise (never follow each other directly or do not both occur).The
data set is completed by adding the appropriate cluster label to each instance. As
such, a labeled data set is obtained to which supervised data mining techniques
can be applied. It is pointed out that non-control-�ow attributes easily can be
incorporated.

7.4.2 Deriving Explanations from a Support Vector Machine (SVM)
Classi�er

As stated earlier, our approach is inspired by [195] in which an algorithm is
proposed to �nd explanations for document classi�cations. The most impor-
tant similarity is the use of an SVM-based classi�er as the base model from
which explanations are derived. As for document classi�cation, SVMs are
ideally suited in our context because the use of multiple or complex attribute
templates will quickly lead to massive dimensionality. By employing the well-
known “liblinear”-library for large-scale linear classi�cation based on linear ker-
nel SVMs, our approach can support data with millions of instances and features.
For more details about SVMs, we refer to [215].

We adapt the approach in [195] to the context of trace clustering with some key
modi�cations. First, support for multi-class prediction has been developed be-
cause in our context it is highly plausible to have more than two clusters. Second,
we con�gure the algorithm in such a way that explanations can be restricted to
behavior present in a process instance (only swaps from 1 to 0 are considered).
Third, several performance optimizations have been introduced: we avoid con-
sidering attributes with no variability (always 0 or 1), prevent repeat checking
of same attribute combinations, and consequently avoid to expand on attribute
combinations that have been considered before. These improvements are ex-
plained in more detail below.

244 7.4. INSTANCE-LEVEL EXPLANATIONS WITH SECPI

7.4.3 Algorithm SECPI (Search for Explanations for Clusters of
Process Instances)

Algorithm 7.1 provides a formalized overview of the workings of the SECPI al-
gorithm. As inputs, an instance to be explained (a process trace in a cluster) is
given, de�ned as a sequence of binary attributes (generated using the attribute
templates as discussed above). Next, a classi�er is assumed to be trained over
the data set which is able to, for a given feature vector, return a predicted class
label and associated score (i.e. probability). Finally, three con�guration options
have to be set: iterations denotes the depth to search for explanations for the
given instance. Increasing this value increases the run time but leads to more
(albeit longer) explanations. The zero_to_one parameter denotes whether 0 to
1 attribute value swaps should be allowed. Since the instance attributes denote
characteristics of the instance which are present (such as the direct following
of two activities, for instance), it is recommended to set this parameter to False,
as explanations denoting that a trace would not appear in its cluster when it did
not present a speci�c characteristic are generally easier to interpret than explana-
tions denoting that a trace should have a certain characteristic (as the question
is then asked where and how exactly this characteristic would manifest itself
within the trace). Additionally, since the multitude of all attributes for a trace
are set to 0, the list of retrieved rules will be shorter and better �ne-tuned to the
actual behavior as seen in the process instance. Finally, require_support denotes
whether attribute value swaps should be taken into account for attributes which
are always set to 0 or 1 (i.e. no variability). Again, it is recommended to set
this to a True value, as providing explanations which require behavior which is
nowhere seen in the log are most likely less useable than those which do only
incorporate seen behavior.

As output, a set of explanatory rules is returned, formalized as a set of sets of
attribute indices. Each set of indices represents a candidate explanation, and
should be interpreted as follows: “this process instance would leave its current
cluster when all the following attributes would be inverted”—or, in case where
zero_to_one is set to False: “when it would not exhibit the behavior as represented
by these attributes”. To construct this set of explanations, the algorithm applies
a heuristic, best-�rst search procedure with pruning. First, each candidate single
attribute is evaluated to see whether rules composed of only one attribute can
be found. If swapping an attribute’s value does not lead to a class change, a
combination of indices (in this case a single index) is added to E to be expanded
in the next step.

CHAPTER 7. EXPLAINING CLUSTERED PROCESS INSTANCES 245

Algorithm 7.1 Formalisation of the SECPI algorithm.
Input: I := 〈Ii ∈ {0, 1}, i = 1, 2, . . . , |I|〉 % Process instance I ∈ L (k clusters)
Input: C : L 7→ {1, 2, . . . ,k} % Trained classi�er with scoring function fC
Input: iterations := 30, zero_to_one := False, require_support := True % Con�guration
Output: Set of explanatory rules R

1: function SECPI(I,C, iterations, zero_to_one, require_support)
2: c := C(I), p := fC(I) % Predicted cluster and corresponding probability
3: R := {} % Set of instance explanations (set of sets)
4: E := {} % Combinations to expand on (set of sets)
5: % Search for single attribute explanations
6: for all i ∈ {1, . . . |I|} do
7: if IsAllowedSwap(I, i) then
8: I′ := SwapAttributes(I, {i})
9: c′ := C(I′) % New cluster label

10: p′ := fC(I′) % New probability
11: if c′ 6= c then R := R∪ {i}
12: else E := E∪ {i} end if
13: end if
14: end for
15: % Iteratively search for multi attribute explanations
16: for all iteration ∈ {1, . . . , iterations} do
17: combo := argmaxA∈E(p− fC(SwapAttributes(I, A))) % Best combination
18: combos′ := {}
19: for all i := 1→ |I| do % Expand combination
20: combo′ := combo∪ {i}
21: if combo 6= combo′ ∧ IsAllowedSwap(I, i)∧¬IsSubsumed(R, combo′) then
22: combos′ := combos′ ∪ {combo′} end if
23: end for
24: for all combo′ ∈ combos′ do
25: I′ := SwapAttributes(I, combo′)
26: c′ := C(I′) % New cluster label
27: p′ := fC(I′) % New probability
28: if c′ 6= c then R := R∪ combo′

29: else E := E∪ combo′ end if
30: E := E \ combo % Don’t check this combination again
31: end for
32: end for
33: return R
34: end function
35: function IsSubsumed(R,A)
36: % Check whether attributes with indices ∈A are subsumed by explanation in R
37: for all E ∈ R do
38: if E ∈A then return True end if
39: end for
40: return False
41: end function
42: function IsAllowedSwap(I, a)
43: % Check whether attribute with index a in instance I may be swapped
44: a′ := abs(Ia − 1)
45: if ¬zero_to_one∧ Ia = 0 then return False end if
46: if require_support∧ @J ∈ L : Ja = a′ then return False end if
47: return True
48: end function
49: function SwapAttributes(I,A)
50: % Swap attributes with indices ∈A in instance I
51: I′ := 〈I′i ∈ {0, 1}, i = 1, 2, . . . , |I| : I′i = if i /∈A then Ii else abs(Ii − 1)〉
52: return I′

53: end function

246 7.5. EXPERIMENTAL EVALUATION

Next, a number of iterations is performed as set by the iterations parameter. A
best-�rst candidate selection from all currently available combinations to expand
on is chosen, based on the classi�er’s scoring function. The goal is to �rst explore
the set of attribute indices for which swapping their values moves the instance
farthest away from its current class label (i.e. cluster). Expansions on this com-
bination are created by creating a new set of combinations combos ′ by adding
each allowed attribute to the set of combo. Expansions which are equal to combo
(i.e. the added attribute was already used in combo) or which are subsumed by an
already existing explanation (the expansion contains all attribute indices of an
existing explanation and thus adds no value) are not considered. Once all expan-
sions are built, they are evaluated to see if they lead to a class change. Expanded
combinations are removed from E to prevent them being chosen again in the
next iteration.

As a classi�cation model, we use a combination of k (the number of clusters)
SVM models to allow for multi-class classi�cation with SVMs. To retrieve the
predicted class label and score, we apply a winner-takes-all strategy as follows.
An SVM model is built per cluster to predict whether an instance is in-cluster
(label: 1) or out-of-cluster (label: 0). To predict the label and probability of an
instance, the probability that the instance is out or in their respective cluster is
evaluated for all SVMs (with probability pk if predicted in-cluster and 1 − pk

if predicted out-of-cluster). The SVM model with the highest probability deter-
mines the label (and its corresponding probability). Note that other classi�ers
(such as decision tree or rule based classi�ers) could, in theory, also be applied in
the SECPI algorithm as long as a scoring function can be de�ned, and in fact could
also return small-sized instance explanations—as is our goal—even although their
model itself (in terms of number of rules or decision tree nodes for example) can
still be large. However, the construction of such models becomes unwieldy when
dealing with high dimensional data sets, so that SVMs remain a better suitable
classi�er for use within our proposed technique.

7.5 Experimental Evaluation

The technique is implemented in ProM 6 as the SVMExplainer-plugin. Apart
from applying the SECPI algorithm, the end user has the option to interact with
a visual interface, allowing for the following analysis tasks. First, inspection of
instances and their explanations (SECPI). Second, the projection of an instance

CHAPTER 7. EXPLAINING CLUSTERED PROCESS INSTANCES 247

Figure 7.2: Screenshot of implemented SECPI plugin.

and its explanation onto a visual (discovered) process model (built per cluster) to
show where the characteristics contained in the explanation are located. Note
that the feasibility of this projection depends on the attribute templates chosen
and is therefore purely optional. Attribute templates can be modi�ed or added
according to the requirements of analysts, even when no simple strategy for pro-
jecting them onto a visual model exists. As a third analysis option, we have added
the capability to aggregate instance level explanations (“show all instances which
can be explained by this rule”) in order to search for a minimal set of rules which
explain all clustered instances. As such, a good middle ground technique is pro-
vided between very detailed instance-level based inspections and the large mod-
els given by global white box classi�ers.

7.5.1 Experimental setup

In order to study the explanatory power of SECPI, an experimental evaluation is
performed with six real-life logs (stemming from various sectors and work�ow
systems). Table 7.2 provides an overview of the basic characteristics of the in-
cluded logs, i.e. the number of instances, number of distinct instance variants,
the number of activities and the average number of activities per instance.

We evaluate the performance of SECPI in comparison with two white box global
classi�ers: RIPPER [132] and C4.5 decision trees [212], as implemented in the
Weka data mining framework. We recognize that such a comparison is imper-
fect, however, it is deemed the most insightful approach for demonstrating the
capabilities of SECPI. Observe that we employ simpli�cation techniques [216] for
decision trees and rule sets and even consider variants with increased pruning in
order to maximize the comparative fairness of our experiments. For the creation

248 7.5. EXPERIMENTAL EVALUATION

Table 7.2: Event logs used in experimental setup with their characteristics.

Event Log Instances Instance Variables Activities Average
Activities per

Instance
incident 24770 1174 18 5.01
purchase 10487 76 23 9.33
telecom 17812 1908 42 4.68
outsource 18884 390 7 3.86
doc�ow 12391 1411 70 5.30
incman 956 212 22 11.73

of clusters, we rely on the ActiTraC-algorithm [191] with default con�guration
settings. The scope of this study is narrowed down further by generating the root
data set with the “sometimes directly follows” attribute template only. Finally,
observe that we evaluate each technique using 3, 5, and 10 clusters. This choice
is arbitrary, however, the quest for �nding the optimal number of clusters is a
speci�c and highly di�cult research problem on its own. This study is not at-
tempt to solve this problem as we merely want to shed light onto the explanatory
power of SECPI under varying clustering sizes.

7.5.2 Results of comparing SECPI to white box techniques

Table 7.3 shows the results of the empirical experiment. The following metrics
are reported: classi�cation accuracy denotes the percentage of correctly classi-
�ed instances based on the trained classi�er (SVMs for SECPI, C4.5 or RIPPER).
Observe that this accuracy metric does not refer to the quality of the clustering
solution itself. Obviously, the mapping of process instances to clusters (cluster-
ing) is considered as input, and the classi�cation accuracy reported thus refers to
whether or not the supervised method used to explain the clustering is capable of
mapping each process instance to the same cluster as per the original mapping of
the clustering technique. Next, the ratio of explainable instances is given. In this
setup, incorrectly classi�ed instances are considered unexplainable, but remark
that it is in fact well possible to inspect explanations given to incorrectly clas-
si�ed instances (i.e. so as to analyse why the classi�er mislabeled these cases).
Note that for SECPI, some cases exist for which no explanation could be retrieved,
even despite the instance being correctly classi�ed. For SECPI, note that not for
all correctly classi�ed instances an explanation could be retrieved in some cases.
This is due to the parameter con�guration applied: although an unlimited num-
ber of iterations were performed, the zero_to_one and require_support parameters
were kept default, in line with our reasoning for limiting the use of both these

CHAPTER 7. EXPLAINING CLUSTERED PROCESS INSTANCES 249

Table 7.3: Results of the experimental evaluation comparing SECPI with C4.5 and RIPPER.
In general, SECPI is capable of striking a better balance between accuracy and comprehen-
sibility, in this case represented by the classi�cation accuracy and the average explanation
length. This table shows the results for 3 clusters.

Event Log Techniqe 3 Clusters
Acc. Ex.I. A.Ex.L. (StDev) Nr.L. T.S. Nr.R.

incident SVMExplainer 1.00 0.58 1.81 (1.38) – – –
incident C4.5 (default) 0.99 0.99 18.36 (6.27) 72 143 –
incident C4.5 (increased pruning) 0.83 0.83 3.00 (0.00) 4 7 –
incident RIPPER (default) 1.00 1.00 47.50 (11.89) – – 51
incident RIPPER (increased pruning) 0.74 0.74 – – – 1
purchase SVMExplainer 1.00 1.00 4.06 (0.38) – – –
purchase C4.5 (default) 1.00 1.00 3.03 (0.28) 11 21 –
purchase C4.5 (increased pruning) 1.00 1.00 2.00 (0.00) – – –
purchase RIPPER (default) 1.00 1.00 11.98 (0.33) – – 8
purchase RIPPER (increased pruning) 1.00 1.00 – – – 1
telecom SVMExplainer 0.99 0.90 1.50 (0.60) – – –
telecom C4.5 (default) 0.98 0.98 64.99 (19.40) 257 513 –
telecom C4.5 (increased pruning) 0.78 0.78 2.00 (0.00) – – –
telecom RIPPER (default) 0.99 0.99 168.25 (41.78) – – 166
telecom RIPPER (increased pruning) 0.78 0.78 – – – 1
outsource SVMExplainer 1.00 0.39 1.72 (1.03) – – –
outsource C4.5 (default) 1.00 1.00 11.43 (2.04) 24 47 –
outsource C4.5 (increased pruning) 0.91 0.91 2.00 (0.00) 2 3 –
outsource RIPPER (default) 1.00 1.00 18.75 (3.51) – – 2–
outsource RIPPER (increased pruning) 0.88 0.88 – – – 1
doc�ow SVMExplainer 0.98 0.98 1.27 (0.84) – – –
doc�ow C4.5 (default) 0.99 0.99 16.19 (5.30) 69 137 –
doc�ow C4.5 (increased pruning) 0.86 0.86 4.17 (0.83) 7 13 –
doc�ow RIPPER (default) 0.99 0.99 41.86 (12.02) – – 48
doc�ow RIPPER (increased pruning) 0.80 0.80 2.00 (0.00) – – 2
incman SVMExplainer 0.98 0.97 2.71 (1.06) – – –
incman C4.5 (default) 0.97 0.97 7.84 (2.33) 26 51 –
incman C4.5 (increased pruning) 0.85 0.85 3.96 (0.81) 7 13 –
incman RIPPER (default) 0.99 0.99 15.56 (5.83) – – 16
incman RIPPER (increased pruning) 0.83 0.83 5.87 (0.33) – – 3

Legend: Acc.: Accuracy, Ex.I.: Number of Explanable Instances, A.Ex.L.:Average Explanation Length, Nr.L.: Number
of Leaves, T.S.: Tree Size, Nr.R.: Number of Rules.

250 7.5. EXPERIMENTAL EVALUATION

Table 7.3 (continued): Results of the experimental evaluation comparing SECPI with C4.5
and RIPPER. This table shows the results for 5 clusters.

Event Log Techniqe 5 Clusters
Acc. Ex.I. A.Ex.L. (StDev) Nr.L. T.S. Nr.R.

incident SVMExplainer 0.99 0.79 1.76 (1.12) – – –
incident C4.5 (default) 0.99 0.99 23.22 (6.64) 151 30 –
incident C4.5 (increased pruning) 0.84 0.84 5.80 (0.92) 9 17 –
incident RIPPER (default) 0.99 0.99 72.58 (12.26) – – 92
incident RIPPER (increased pruning) 0.79 0.79 6.00 (0.00) – – 2
purchase SVMExplainer 1.00 1.00 4.11 (0.42) – – –
purchase C4.5 (default) 1.00 1.00 3.03 (0.35) 12 23 –
purchase C4.5 (increased pruning) 1.00 1.00 2.00 (0.00) – – –
purchase RIPPER (default) 1.00 1.00 8.99 (0.16) – – 8
purchase RIPPER (increased pruning) 1.00 1.00 – – – 1
telecom SVMExplainer 0.99 0.87 1.46 (0.56) – – –
telecom C4.5 (default) 0.98 0.98 66.79 (19.38) 331 661 –
telecom C4.5 (increased pruning) 0.78 0.78 2.00 (0.00) – – –
telecom RIPPER (default) 0.99 0.99 199.11 (41.86) – – 208
telecom RIPPER (increased pruning) 0.78 0.78 – – – 1
outsource SVMExplainer 1.00 0.55 1.67 (1.08) – – –
outsource C4.5 (default) 1.00 1.00 13.53 (2.49) 42 83 –
outsource C4.5 (increased pruning) 0.91 0.91 2.00 (0.00) 2 3 –
outsource RIPPER (default) 1.00 1.00 23.26 (2.19) – – 25
outsource RIPPER (increased pruning) 0.88 0.88 – – – 1
doc�ow SVMExplainer 0.96 0.96 1.29 (0.62) – – –
doc�ow C4.5 (default) 0.98 0.98 22.50 (8.41) 18– 359 –
doc�ow C4.5 (increased pruning) 0.82 0.82 6.95 (1.60) 11 21 –
doc�ow RIPPER (default) 0.98 0.98 110.30 (27.60) – – 106
doc�ow RIPPER (increased pruning) 0.73 0.73 4.88 (0.32) – – 3
incman SVMExplainer 0.97 0.96 3.20 (1.21) – – –
incman C4.5 (default) 0.98 0.98 9.37 (2.53) 38 75 –
incman C4.5 (increased pruning) 0.87 0.87 3.88 (0.33) 6 11 –
incman RIPPER (default) 0.97 0.97 17.98 (4.24) – – 17
incman RIPPER (increased pruning) 0.86 0.86 7.37 (1.11) – – 4

parameters, as detailed above. For the white box techniques, however, it is not
possible to impose such limits on the model being built, so that we consider all
correctly classi�ed instances also as explainable.

Next, average and standard deviation for the length of instance explanations is
given. For SECPI, the length of the best explanation corresponds to the number of
attributes incorporated in the shortest (i.e. �rst) explanation found1. For C4.5 and
RIPPER, however, explanations for speci�c instances have to be derived in some
other manner when using these classi�ers as white box techniques. As such,
for each instance, we investigate which path through the rule base or decision
tree was followed in order to return a class label and derive the length from this

1Consider for example the explanation “IF (SometimesDirectlyFollows(a,b) = 0 AND
SometimesDirectlyFollows(b,d) = 0 AND SometimesDirectlyFollows(f,g) = 0) THEN Clusteri”
denoting that this instance would leave the cluster if the three attributes corresponding to the some-
times directly follows relations listed above would be set to zero. The length of this explanation is
thus equal to 3.

CHAPTER 7. EXPLAINING CLUSTERED PROCESS INSTANCES 251

Table 7.3 (continued): Results of the experimental evaluation comparing SECPI with C4.5
and RIPPER. This table shows the results for 10 clusters.

Event Log Techniqe 10 Clusters
Acc. Ex.I. A.Ex.L. (StDev) Nr.L. T.S. Nr.R.

incident SVMExplainer 0.99 0.79 1.86 (1.19) – – –
incident C4.5 (default) 0.99 0.99 22.07 (5.20) 226 451 –
incident C4.5 (increased pruning) 0.88 0.88 8.55 (1.22) 1– 19 –
incident RIPPER (default) 1.00 1.00 86.90 (10.40) – – 121
incident RIPPER (increased pruning) 0.85 0.85 6.79 (0.72) – – 4
purchase SVMExplainer 1.00 1.00 4.11 (0.42) – – –
purchase C4.5 (default) 1.00 1.00 3.03 (0.35) 12 23 –
purchase C4.5 (increased pruning) 1.00 1.00 2.00 (0.00) – – –
purchase RIPPER (default) 1.00 1.00 9.99 (0.21) – – 9
purchase RIPPER (increased pruning) 1.00 1.00 – – – 1
telecom SVMExplainer 0.99 0.88 1.56 (0.55) – – –
telecom C4.5 (default) 0.98 0.98 73.27 (20.95) 456 911 –
telecom C4.5 (increased pruning) 0.80 0.80 17.10 (6.20) 27 53 –
telecom RIPPER (default) 0.97 0.97 217.23 (40.11) – – 239
telecom RIPPER (increased pruning) 0.78 0.78 – – – 1
outsource SVMExplainer 1.00 0.55 1.62 (1.06) – – –
outsource C4.5 (default) 1.00 1.00 13.68 (2.30) 59 117 –
outsource C4.5 (increased pruning) 0.94 0.94 3.92 (0.38) 4 7 –
outsource RIPPER (default) 1.00 1.00 27.97 (3.14) – – 32
outsource RIPPER (increased pruning) 0.94 0.94 2.00 (0.00) – – 3
doc�ow SVMExplainer 0.96 0.96 1.41 (0.54) – – –
doc�ow C4.5 (default) 0.97 0.97 26.41 (10.61) 332 663 –
doc�ow C4.5 (increased pruning) 0.81 0.81 8.15 (1.99) 19 37 –
doc�ow RIPPER (default) 0.94 0.94 148.37 (29.89) – – 157
doc�ow RIPPER (increased pruning) 0.70 0.70 12.76 (0.73) – – 5
incman SVMExplainer 0.96 0.96 3.26 (1.31) – – –
incman C4.5 (default) 0.97 0.97 12.57 (3.64) 49 97 –
incman C4.5 (increased pruning) 0.88 0.88 6.99 (1.86) 13 25 –
incman RIPPER (default) 0.97 0.97 28.73 (5.06) – – 25
incman RIPPER (increased pruning) 0.81 0.81 9.05 (1.86) – – 5

explanation (i.e. the number of attributes involved in the conjunction to reach
this outcome). For C4.5 and RIPPER, we also report the size of the global model
in terms of number of tree leaves, tree size, and number of rules.

The results show similar accuracy values for SECPI, C4.5 and RIPPER on all logs
compared when using default parameter settings. Although not reported ex-
plicitly in this experiment, we note that SECPI generally comes with lower run
time to construct the classi�er following from the use of linear SVMs. How-
ever, we can observe that deriving explanations for trace instances directly from
these white box classi�ers leads to oversized explanations and multiple attribute
checks, whereas SECPI is much better suited to �nd shorter, strong explana-
tions. Also note that the white box classi�ers construct explanations which po-
tentially contain less-evident conjunctions, such as these based on an attribute
(thus: behavior) being absent, rather than present. As was discussed before, it
is much harder to determine how an instance would change if certain behavior

252 7.6. CONCLUSION

would have been incorporated (as this behavior can present itself in many di�er-
ent ways in the trace) than whether certain behavior which currently is present
would not have occurred. Furthermore, observe that the white box classi�ers
return large global models (seen for example by the number of rules returned
by RIPPER). Increasing the amount of pruning performed indeed decreases the
length of the retrieved explanations (and the size of the global model), but comes
with two disadvantages. First, observe the drop in accuracy in cases where in-
creased pruning is applied. Second, applying heightened pruning leads white
box classi�ers (especially RIPPER) to return a model containing a single rule: the
majority prediction. As this rule is unusable in explaining the reasoning behind
the clustering of instances, we cannot report the average explanation length in
these cases (shown as “–” in Table 7.3). The overall conclusion of Table 7.3 is that
SECPI is capable of providing much shorter and more useful (only behavior that
is present in an instance is considered) explanations across event logs with dif-
ferent characteristics and for varying clustering sizes, with comparable accuracy
to global white box classi�ers.

7.6 Conclusion

In this chapter, SECPI (Search for Explanations of Clusters of Process Instances),
a new technique for providing human understanding for trace clustering results
was presented. The need for such a technique stems from the observation that
typical trace clustering techniques do not provide su�cient insight into how a
clustering solution is composed. Furthermore, it was argued that various poten-
tial alternative techniques, for instance a visual comparative analysis of the un-
derlying discovered process models, fall short in resolving the problem at hand.
Accordingly, our SECPI-algorithm aims to �nd a minimal set of domain-based
characteristics such that, if these characteristics were not present, the instance
would not remain in its current cluster. In this way, the technique is capable of
discerning concise, individual rules that clearly explain why a certain instance is
part of a cluster. In addition, its implementation as a ProM plugin allows for vi-
sualizing an explanation in the respective discovered process models underlying
the clusters. In the experimental evaluation, SECPI was shown to strike a better
balance between accuracy and comprehensibility as compared to typical white
box classi�cation techniques such as rule and decision tree learners. In future
work, we foresee to expand on a number of closely related topics. First, we plan
to inspect the impact of the attribute templates used as they play a crucial role in

CHAPTER 7. EXPLAINING CLUSTERED PROCESS INSTANCES 253

representing the (control-�ow) domain. Also, we aim at investigating the incor-
poration of non-control-�ow-based attributes. Second, aggregation of instance-
level explanations is a worthwhile research track as well. The current implemen-
tation already supports the investigation of shared explanations amongst groups
of instances, which is a preliminary approach to bring our explanation technique
to the global level. However, we plan to investigate more intelligent rule clus-
tering and visualization techniques for this purpose. In the future, we plan to
make the global versus instance-based trade-o� more con�gurable towards the
end user. Finally, we will focus on practical use cases in which SECPI might prove
bene�cial. User-driven discovery of process model collections from event data is
one such area where it can support the feedback mechanism. Furthermore, SECPI
is also perfectly capable of relating exogenously de�ned clusters, e.g. high ver-
sus low cost instances, to process-speci�c control-�ow characteristics, a feature
often desired in business process improvement cycles.

254 7.6. CONCLUSION

255

Chapter 8

A Conformance Analysis Benchmarking
Framework

“When you are content to be simply yourself
and don’t compare or compete,

everyone will respect you.”
– Lao Tzu

8.1 Introduction

This chapter introduces CoBeFra, a comprehensive, useable toolset for assess-
ing the goodness of a process model or to easily benchmark the performance of
di�erent models against each other using multiple conformance checking met-
rics. The need for a comprehensive evaluation framework in the process mining
domain was �rst articulated by Rozinat et al. [124]. As such we present the archi-
tecture of an extensible comprehensive benchmarking framework (abbreviated
to CoBeFra, allowing for the consistent, comparative and repeatable calculation
of process conformance metrics. Such an architecture is considered as being
highly valuable for process mining researchers because it signi�cantly facilitates
the development and assessment of process discovery as well as conformance
checking techniques.

In addition, we present a straightforward technique for event log generation from
Petri nets for use within experimental setups, and present a benchmarking study

256 8.2. PROCESS MODELS QUALITY METRICS

which aims to uncover the relationship between process discovery techniques’
performance and event log characteristics, which was performed using the two
developed tools (CoBeFra and the event log generator).

8.2 Process Models Quality Metrics

A thorough overview of state of the art conformance checking techniques has
already been provided in the introductory chapter—see Table 1.2, many of which
have been included in our experimental setup of Chapter 3, which introduced two
novel metrics towards assessing the precision and generalization capabilities of
process models. Recall that the quality of a procedural process model (designed
or discovered) can be judged along di�erent perspectives. Figure 8.1 details that
these perspectives can be categorized into two high-level dimensions: accuracy
and comprehensibility. Each of these high-level quality dimensions can be fur-
ther decomposed. For instance, the accuracy of a process model consists of the
following three subdimensions: its recall (or: �tness), indicating the ability of
the process model to replay or execute the observed behavior; its precision (or:
appropriateness), denoting the model’s ability to disallow (i.e. not support the
execution of) unwanted, unseen behavior and thus its ability towards preventing
under�tting the observed behavior; and last, the model’s generalization capabil-
ity, which indicates the model’s ability to allow unseen but nevertheless desired
or expected behavior and which can thus be seen as the counterpart of preci-
sion (i.e. avoiding over�tting). Next, from the viewpoint of comprehensibility, a
distinction can be made between simplicity (or: complexity) and structuredness
(or: understandability, entropy), the latter representing the ease of interpretation
of the model while simplicity refers to the number of control-�ow constructs
present in the process model. As such, simplicity represents the principle that
“all other things equal, a simpler explanation is better than a more complex one”,
a statement famously known as “Occam’s razor”. Oftentimes, simple counts of
model elements are used as simplicity metrics.

8.2.1 Accuracy Metrics

As indicated above, the overall accuracy of a process model consists of three
perspectives: recall, precision and generalization. Cook and Wolf [48] are to
be considered the �rst researchers to quantify the relationship between process

CHAPTER 8. COBEFRA 257

Process Model Quality

Accuracy
 Recall

“able to replay the event log”

Precision
“not overfitting the event log”

Generalization
“not underfitting the event log”

Comprehensibility
 Simplicity

“Occam’s razor”

Structuredness
“ease of interpretation”

Figure 8.1: Quality dimensions for evaluating procedural process models .

models and event logs. Within the process mining domain, Rozinat et al. [100]
de�ned the notions of �tness and appropriateness in a foundational study on
conformance checking. Since, the domain has attracted the attention of many
other researchers, as demonstrated by Table 1.2, which provides an overview of
the most noteworthy conformance metrics and an indication of which metrics
are currently already implemented in the proposed benchmarking framework.

In the remainder of this section, the metrics included in the CoBeFra framework
are discussed in further detail.

8.2.1.1 Recall

Recall or �tness can be seen as the primordial accuracy evaluation perspective
because it re�ects how much behavior present in the event log is captured by the
model, which can be regarded as an obvious quality requirement for designed
or discovered models before continuing onwards with other analysis tasks. As
such, many researchers have proposed metrics that quantify this dimension:

Fitness (f) is a metric obtained by evaluating whether each trace in the
event log can be reproduced by the generative model, in this case a Petri
net. This procedure is called sequence replay [100, 217], as we have dis-
cussed in the �rst part of this dissertation. During replay, the transitions
in the Petri net will produce and consume tokens to re�ect the state tran-
sitions. Consequently, the �tness measure punishes for tokens that must

258 8.2. PROCESS MODELS QUALITY METRICS

be created additionally in the marked Petri net and also for tokens that
remain after replay.

Proper Completion (PPC) is a coarse-grained metric which returns the per-
centage of traces without any missing or remaining tokens after trace re-
play [100]. Or, put di�erently, the percentage of traces for which a Fitness
(f) value of 1 can be obtained.

Behavioral Recall (rpB) as de�ned by Goedertier et al. [2] is the percentage
of correctly classi�ed positive events in the event log. Also by using se-
quence replay techniques, it is veri�ed whether every positive event can be
parsed by the model. Note that this metric di�ers from Fitness (f) since it
denotes the ratio of (positive) events which could be replayed successfully
by the process model, without incorporating the exact amount of missing
or remaining tokens in the metric de�nition.

(Average) Alignment Based Trace Fitness (fa, favga) is a recent recall metric
in the process mining domain [108–111]. In contrast to a large majority of
recall metrics, this metric is based on aligning a process model and an event
log, instead of replaying the log in the model. As such, the metric punishes
for alignments which require model (log) moves without a corresponding
move in the log (model). Other variants base the resulting value on the
raw cost given to various kinds of misalignments rather than returning
the percentages of non-aligned log-model moves.

Weidlich et al. [102–104] have proposed a collection of Behavioral Pro�le-
based conformance metrics. Instead of relying on state-based techniques
that involve replaying the logs, the authors base their metrics on di�erent
types of constraints that a process model can impose for a pair of activities
(i.e. the behavioral pro�le of the process model). We have included the
Behavioral Pro�le Conformance metrics in the CoBeFra framework, both
available in the form of the “standard” implementation provided by Wei-
dlich et al. (using the jBPT library) and as an alternative implementation
developed by the authors which is able to deal with event logs containing
duplicate activities.

8.2.1.2 Precision

Precision entails that process models should prevent the execution of unseen
and unwanted behavior (i.e. not under�tting the data). The following metrics

CHAPTER 8. COBEFRA 259

are included in CoBeFra:

Advanced Behavioral Appropriateness (a ′B) as de�ned in [100] is a footprint-
based, rather coarse-grained precision metric, which in addition requires
an exhaustive time consuming state space exploration.

Behavioral Speci�city (snB) is the percentage of correctly classi�ed negative
events during sequence replay. As such, it is the counterpart of Behavioral
Recall (rpB). Arti�cial negative events can be generated using the technique
described in Chapter 3. However, the de�nition of the metric does not ex-
clude the use of natural negative events or negative events stemming from
other techniques. Note that, for many process model evaluation tasks, it is
not the percentage of correctly classi�ed negative events which is of real
interest to the end user (the speci�city), but rather the amount of “false pos-
itives”, i.e. behavior which is allowed by the process model although this
behavior is rejected in the given event log in the form of a negative event.
This notion better corresponds with the true meaning of precision and is
captured in the Behavioral Precision metric (pB) as de�ned by De Weerdt
et al. [107] and extended in this work in the form of a robust weighted
variant (pwB), Weighted Behavioral Precision.

ETC Precision (etcP) is based on the construction of a pre�x automaton for
the event log at hand [105, 106]. By taking into account the number of
so-called escaping edges while mapping the behavior in the event log with
the behavior in the model, a state-of-the-art precision metric is de�ned by
comparing the amount of “escaping” behavior the models allows in a given
state compared to the log pre�x automaton which is brought (using replay)
in a comparable state. A very similar metricAlignment Based Precision (pA)
based on the concept of log-model alignments is described in [109].

One Align Precision (a1p) and Best Align Precision (ap) extend the etcP metric
by �rst aligning the log and the model [112]. In this way, the main problem
of etcP , i.e. the fact that precision is assessed as long as the trace under
investigation can be replayed without error, is solved.

8.2.1.3 Generalization

Although models should be precise, generalizing beyond observed behavior is
also a necessity. This is because assuming that all behavior is included in an

260 8.2. PROCESS MODELS QUALITY METRICS

event log is a far too strong completeness assumption. Metrics quantifying the
generalization dimension should punish process models which are overly precise,
thus not allowing unseen but very likely (not explicitly forbidden) behavior when
taking into account the data in the event log:

Behavioral Generalization (gB) and Weighted Behavioral Generalization
(gwB): as were introduced and elaborated in Chapter 3.

Alignment Based Probabilistic Generalization (gA) metric also starts from
the principle of log-model alignment as described by Adriansyah et al. [109].
The authors propose a probabilistic (Bayesian) estimator which tries to as-
sess the chance whether events will occur which exhibit behavior that was
not seen before.

8.2.2 Comprehensibility Metrics

Because structuredness (ease of interpretation) is a di�cult dimension to mea-
sure, many researchers focus on simplicity for quantifying the comprehensibility
of process models. In [114], around twenty di�erent metrics are de�ned to assess
a model’s compressibility. We have opted to include just a few count-based sim-
plicity metrics by default in the CoBeFra framework: the number of arcs, nodes,
places, transitions or cut vertices; the average node arc degree and the weighted
place/transition node arc degree. Next to these metrics, the Advanced Structural
Appropriateness (a ′S) metric [100] is also included. This metric evaluates two spe-
ci�c design guidelines for expressing behavioral patterns, namely the occurrence
of alternative duplicate tasks and redundant invisible tasks.

8.2.3 Combining Metrics

Another aspect that is becoming increasingly important in the conformance
checking domain is the question on how to combine evaluation dimensions. In
earlier work, we have proposed the use of the F-score to combine recall and
precision metrics [107]. In [218], Buijs et al. propose to weight four evaluation
dimensions, i.e. recall, precision, generalization and comprehensibility, in one
metric for steering their genetic programming inspired Evolutionary Tree Miner
(ETM) algorithm. As such, it was decided to add the F-score technique as well as

CHAPTER 8. COBEFRA 261

a so-called “free weigher” to CoBeFra. The F-score allows to combine a �tness
and precision metric with a con�gurable β value (F1 being the harmonic mean
of �tness and precision), whereas the free weigher allows to con�gure a linear
combination of various metrics with con�gurable coe�cients (weights).

8.3 Architectural Requirements

The following principles summarize the basic design requirements that were con-
sidered when developing the benchmarking framework in ProM.

8.3.1 Ease of Use

The �rst design requirement puts an emphasis on user friendliness. With this
benchmarking framework, we aim to o�er a straightforward interface for im-
porting event logs and process models, for mapping each event’s class (i.e. its
activity name and life cycle transition) to one of the activities (tasks, transitions)
in the process model, for con�guring the various metrics and, �nally, for inspect-
ing and exporting the obtained results. Furthermore, although the ProM frame-
work allows for a clear di�erentiation between the end-user oriented graphical
interface and internal logic, we have found that many plugins still rely on the
presence of the user interface (UI), preventing an easy implementation in exter-
nal (headless) scripts or tools. Therefore, in order to simplify experimental setups
requiring a great deal of scripting and batch processing, we have strengthened
the decoupling of the user interface and programming logic in CoBeFra, allowing
each step (log and model setup, metric con�guration and result processing) to be
executed in a pure “headless” manner.

8.3.2 Reproducibility of Experiments

A second important design requirement consists of providing the functionality
to reproduce results. By allowing to store input and metric con�gurations, it is
very straightforward to repeat experiments over time.

262 8.3. ARCHITECTURAL REQUIREMENTS

8.3.3 Comparative Consistency

Consistency is safeguarded by a number of elements. First of all, because the
same initially con�gured model-log mapping is used across all metrics, no obvi-
ous mistakes are made to this regard. Furthermore, by streamlining the metric
con�guration step, users will have less trouble in con�guring the often huge
amount of con�gurations across di�erent experiments, which promotes consis-
tency of results.

8.3.4 Computation Management

A limitation of the ProM framework is that it is not straightforward to set up
an environment in which multiple conformance checks can be executed at the
same time. Therefore, our approach is to �rst allow the user to con�gure all
model-log inputs together with the list of desired metrics to run and their con-
�guration. Afterwards, the calculation of the metrics itself is started; we have
implemented a computation manager which allows to run multiple metric cal-
culations in parallel. The next section provides more technical details. Finally,
since some metrics can consume a large amount of time before �nishing, an op-
tion to both manually and automatically cancel a metric’s calculation procedure
was added as well. This allows researchers to easily impose time-based bounds
while running experiments.

8.3.5 Extensibility

Finally, the framework is designed so to be easily extended with other or fu-
ture conformance metrics. A large number of metrics have already been imple-
mented, but we invite scholars and authors to implement their work in CoBeFra
as well. Making a ProM conformance checking plugin available in CoBeFra is
quite straightforward, especially if best practises were followed during the de-
velopment of the original ProM plugin, since CoBeFra also uses and allows to
easily tie in with the ProM architecture.

CHAPTER 8. COBEFRA 263

8.4 Framework Architecture

This section describes the technical architecture of the framework in more de-
tail. Particular attention is paid to the topics of model-log mapping, separation
between domain logic and user interface, legacy support and parallelism.

8.4.1 General Architecture

The CoBeFra framework is integrated in ProM 6 and reuses various existing
libraries and components available in ProM. Figure 8.2 provides a schematic
overview of the developed architecture. At the root of the architecture is a global
application controller which is responsible for managing the general user inter-
face, the �ow between the initial input setup, metric con�guration and result
handling, and also provides an application programming interface (API) to per-
form all steps programmatically. CoBeFra can be started as any other ProM plu-
gin, and allows to optionally specify a previously saved project to resume or
restart an experiment. Importing and exporting of input objects is done through
the standard ProM provided architecture as well, and visualization of obtained
metric results was decoupled into a separate visualization plugin. Once CoBeFra
is started, the framework discards all ProM-speci�c dependencies so that it can
easily be run as a stand-alone application as well.

8.4.2 Particular Items

8.4.2.1 Mapping Process Models with Event Logs

Although it appears straightforward to link process model activities (Petri net
transitions) with events in a process model after executing a process discovery
algorithm or during model execution, this link or “mapping” is lost once both
objects are saved separately, or are modi�ed asynchronously. Mapping a model
to a log is thus a crucial step in each conformance checking analysis task, as
there needs to be a clear and unambiguously de�ned relation between process
model activity elements and log events (see the µ function in the introductory
preliminaries).

264 8.4. FRAMEWORK ARCHITECTURE

C
o
B

eF
ra

 P
lu

g
in

C
o
B

e
F
ra

In
p
u
t

H
an

d
li
n
g

(L
o
g
-m

o
d
el

m

ap
p
in

g
)

C
o
n
fo

rm
an

ce

C
h
ec

k
in

g
 M

et
ri

cs

L
ib

ra
ri

es

M
et

ri
c

C
o
n
fi
g
u
ra

ti
o
n
 U

I

R
es

u
lt

s

C
h
ai

n
 o

f
C

o
m

m
an

d
 P

at
te

rn

·

P
ro

M
 5

 l
ib

ra
ri

es
·

P
ro

M
 6

 l
ib

ra
ri

es
·

C
o
n
fo

rm
an

ce
 c

h
ec

k
in

g

p
lu

g
in

s

P
ro

M

C
al

cu
la

ti
o
n

C
o
n
tr

o
ll
er

U
ti

li
ti

es
·

L
o
g-

m
o
d
el

 m
ap

p
in

g

co
n
v
er

si
o
n

·

P
ro

M
 c

o
n
te

x
t

fa
ca

d
es

·

P
ro

M
 5

 e
v
en

t
lo

g
 f
aç

ad
e

·

O
th

er
 u

ti
li
ty

 m
et

h
o
d
s

P
ar

al
le

l
E

x
ec

u
ti

o
n
 a

n
d

M
an

ag
em

en
t

A
p
p
li
ca

ti
o
n
 C

o
n
tr

o
ll
er

·

M
an

ag
e

an
d
 c

o
n
tr

o
l
g
en

er
al

 u
se

r
in

te
rf

ac
e

·

P
ro

v
id

e
A

p
p
li
ca

ti
o
n
 P

ro
g
ra

m
m

in
g
 I

n
te

rf
ac

e
fo

r
h
ea

d
le

ss
 e

x
ec

u
ti

o
n

E
x
te

rn
a
l
P

ro
g
ra

m
,

S
c
ri

p
t,

 e
tc

.

Im
p
o
rt

 /
 E

x
p
o
rt

P

lu
g
in

V
is

u
al

iz
at

io
n

P
lu

g
in

R
es

u
lt

 U
I

C
o
B

e
F
ra

 S
ta

n
d
-

A
lo

n
e
 E

x
e
c
u
ti

o
n

S
et

 I
n
p
u
t

L
o
g
s

/
 M

o
d
el

s,

M
ap

p
in

g,
 M

et
ri

cs
,

C
o
n
fi
g
u
ra

ti
o
n
 a

n
d
 E

x
ec

u
te

T

h
ro

u
g
h
 A

P
I

S
ta

rt
 U

se
r

In
te

rf
ac

e

S
et

 U
p
 I

n
p
u
ts

 i
f
G

iv
en

,
D

is
ca

rd
 P

ro
M

 C
o
n
te

x
t

R
et

u
rn

 R
es

u
lt

 O
b
je

ct

P
as

s
R

es
u
lt

 V
is

u
al

iz
at

io
n
 t

o

P
ro

M
 V

is
u
al

iz
er

S
av

e
an

d
 L

o
ad

 I
n
p
u
t

O
b
je

ct
s

to
 P

ro
M

 W
o
rk

b
en

ch

Figure 8.2: Schematic overview of the CoBeFra architecture.

CHAPTER 8. COBEFRA 265

We have found that many conformance checking plugins in ProM provide al-
ternative implementations of the above described mappings; to be exact, six dif-
ferent methods to describe the link between event log activities and Petri net
transitions were discovered. Furthermore, many of them do not deal with the
possibility of “blocked” transitions, and have di�erent ways to specify “invisi-
ble” transitions. Finally, many existing mappers come with UI components that
allow users to construct a mapping, but many of them are cumbersome to use,
especially when having to deal with large models containing many transitions
or event classes, or when having to execute repeated experiments. Since even a
single incorrectly mapped transition may lead to largely skewed quality results,
the mapping process should try to prevent errors as best as possible. Therefore,
we have implemented an uni�ed mapping system to deal with the above issues.
A mapping must be performed by the user between each model-event log pair,
but the provided user interface allows to con�gure mappings for multiple mod-
els towards the same log �le simultaneously. Furthermore, an intelligent string
matching routine pre-maps transitions to event classes whenever possible, pro-
viding an option to the user to immediately map the non-automatically matched
transitions as being invisible or blocked. Finally, autocompletion-enabled UI con-
trols allow users to rapidly assign the remaining transitions to an event class.
Our mapping object serves as the basis to save and load model-event log com-
binations, preventing having to re-enter the mapping between an event log and
process model every time an experiment is ran. Finally, our collection of utility
classes provides support to convert our mapping to the di�erent other mapping
representations used by various metrics in a transparent manner, so that the step
of constructing a mapping is completely decoupled from the con�guration and
execution of the conformance checking metrics.

8.4.2.2 User Interface and Program Logic Separation

A second architectural aspect we wish to emphasize is the great deal of atten-
tion given to separating user interface components with the actual domain model
and program logic (e.g. calculation of metric values). To do so, the conformance
checking metrics themselves have been implemented as classes which ful�ll their
metric contract by implementing a “Metric” interface. Precisely speaking, this
contract imposes the constraints on an implementing metric that it must be able
to return a numeric result value when asked to, and that the implemented metric
must be con�gurable via a standard means, that is by getting and setting key-
value attributes. The latter also allows for easy serialization of a metric con�gu-

266 8.4. FRAMEWORK ARCHITECTURE

ration, which is used to save and load experimental setups. These metric calcu-
lating classes are completely UI-agnostic. Next, to provide an easy means to con-
�gure each metric, UI components can be de�ned which take a metric class as an
input and allow to modify a metric’s con�guration via a visual interface. The UI
components are annotated (using standard Java Annotations) with information
to specify which metric classes can be con�gured through their provided inter-
face. When starting CoBeFra, an internal repository of all UI providing classes is
constructed. When a user wishes to con�gure a speci�c metric, all matching UI
classes are iterated through (using the chain of command programming pattern)
and shown. Users accessing CoBeFra using the API can completely bypass the
user interface and directly con�gure the metrics themselves using the key-value
store discussed above. Finally, it should be noted that some existing ProM plu-
gins rely heavily on (or assume) the presence of a user interface, for example
by hooking logical segments directly into UI actions (such as pressing a but-
ton). To cleanly implement these metrics in CoBeFra, some code was copied and
refactored to remove the UI-relying segments. Another issue often encountered
when inspecting ProM plugins is that authors assume the presence of the ProM-
provided “plugin context” object (for example to report progress back to the ProM
framework), but are not able to continue when this context is absent or – worse
– when this context is not speci�cally de�ned as being a UI-enabled (ProM al-
lows to specify a command line interface context, but some plugins speci�cally
check for the UI-based context, even when this is not required). Therefore, we
have also de�ned a utility class which wraps around the ProM context object
de�nition by overloading UI-speci�c functions, which can be passed directly to
a conformance checking metric’s methods.

8.4.2.3 Support for ProM 5 Metrics

An important contribution of our conformance checking framework is that it
includes some well-known conformance checking metrics which are only im-
plemented in ProM 5, namely Fitness (f), Advanced Behavioral Appropriateness
(a ′B) and Advanced Structural Appropriateness (a ′S). The ProM 5 architecture
greatly di�ers from ProM 6. Not only is the notion of plugin contexts missing
(instead, progress listener objects are used), but the internal way event logs are
represented is dissimilar as well (ProM 5 does not use the XES standard). Since
it would be infeasible to redundantly rewrite large parts of ProM 5 conformance
checking metrics (possibly leading to new errors as well), we have de�ned facade
classes wrapped around ProM 5’s progress and event log related de�nitions. Not

CHAPTER 8. COBEFRA 267

only does this allow to use ProM 5-only conformance checking metrics, but also
to directly load in XES-�les and use them in combination with these metrics,
which is not possible when using ProM 5 itself (which only accepts the MXML-
format). Since the facade objects overload the event log reading methods on the
�y, this process is transparent to the end-user.

8.4.2.4 Computation Management and Parallelism

The CoBeFra benchmarking framework allows to run multiple metric calcula-
tions in parallel, thus speeding up experiments, especially on multi-core systems.
Next to parallelization, the ability to (automatically) cancel a metric’s calculation
routine is also an important requirement, as this allows users to impose time
constraints on the executed experiments. To implement these features, we have
opted towards using a multi-process architecture (rather than multi-threaded).
This approach entails some useful advantages. Not only does this avoid hav-
ing to wrap each metric’s calculation routine in a threaded worker unit (possi-
bly leading to synchronization issues or other multi-threading related problems),
but also prevents that a fatal error in one metric would halt the complete exper-
iment and discard its results. Management of processes is a simple matter. Users
can specify a time limit after which the metric’s process is killed. To commu-
nicate back and forth from the CoBeFra host process and the metric executing
processes, we make use of standard interprocess communication practices by
redirecting standard POSIX input, output and error streams. The CoBeFra host
process �rst sends the metric’s con�guration, event log and model to the process
using a compressed stream, after which the host process waits until a result is
sent back on the metric’s process output stream, or an error is thrown on the
metric’s process error stream, which is captured and shown to the end user in
the �nal result overview as well. Although currently unimplemented, it can in-
deed be remarked that this setup theoretically allows to parallelize conformance
checking not only on the same host machine, but also across multiple machines
over a networked architecture. Exploring the possibilities towards enabling con-
formance checking to be executed on a computing grid is acknowledged to be an
interesting path for further work. Other possibilities towards future work and
current limitations are listed in the following section.

This discussion on architecture concludes the presentation of our comprehen-
sive benchmarking framework (CoBeFra). Figure 8.3 depicts a screen capture of
the benchmarking tool. We invite peers and researchers studying conformance
checking to contribute and improve upon the framework.

268 8.5. FUTURE WORK

Figure 8.3: Screen captures of the CoBeFra user interface.

8.5 Future Work

Although the proposed CoBeFra framework satis�es the desired design require-
ments and already includes a great deal of conformance checking metrics, di�er-
ent potential improvements exist, summarized in the following overview.

8.5.1 Other Process Model Representations

The currently-available implementation of CoBeFra only includes Petri net ori-
ented metrics. However, many other process representations exist for which an
extensive conformance checking framework would be bene�cial. For instance,
de Leoni et al. [219] apply the principle of model-log alignment on declarative
process models (Declare models). Accordingly, we plan to investigate how other
representations can be incorporated in CoBeFra.

8.5.2 Graphical Output

The current version of CoBeFra presents the metric results as a table, exportable
as a CSV-�le. Graphical outputs such as charts, graphs, pareto-maps, etc. will

CHAPTER 8. COBEFRA 269

make the resulting output more user friendly. This will also be explored in future
work.

8.5.3 Root Cause Analysis

It is important to note that while conformance checking metric values give a
good initial indication regarding the quality of a process model (or the level of
conformance of an event log), it is also important to know where errors occurred
in the process model (or perhaps time frame in the event log). Some conformance
checking metrics already allow to do so. Standardizing this feature over multiple
metrics is a challenging task which is perhaps out of scope for a benchmarking
oriented framework.

8.5.4 Automatizing Process Discovery

CoBeFra allows to automatize a great deal of experimental setup, con�guration
and management tasks when executing a quality assessment study. Neverthe-
less, the presence of process models and event logs is assumed, which may re-
quire that users �rst run several process discovery algorithms to obtain the set of
desired process models to be checked. Automatizing the task of process discov-
ery (perhaps in a separate tool) is a possible path for future consideration, but
was not included in the current scope of the project.

8.5.5 Fine Tuning Event Classi�cation and Non-control-�ow Con-
formance Checking

The benchmarking framework proposed in this chapter mainly focused on the
control-�ow perspective of process models. It is possible to incorporate other
perspectives (e.g. data or resource-based views) in the task of conformance
checking as well. To do so, the current mapping system has to be modi�ed to
allow for more con�gurability regarding the classi�cation of events. In addition,
conformance checking metrics have to be incorporated which are able to check
on these other dimensions. We note, however, that much of the conformance
checking literature so far has focused on the control-�ow perspective.

270 8.5. FUTURE WORK

8.5.6 Standard Validation Event Log Set

Especially for researchers developing a new process discovery algorithm, or con-
formance checking technique, it is necessary to compare ones own work with the
e�orts of other peers. The question then becomes which input data set(s) (event
logs) should be used to do so. Ideally, a “standard” data set should be constructed,
including logs of di�erent sizes (trace variant count, trace instances count, ac-
tivity type count, etc.) and of di�erent known quality level (e.g. �ower model).
Additionally, a standard data set should also include some robustness checks,
for example by including very noisy (purely random) event logs. Constructing
such an ideal event log set is an interesting challenge which would be a �tting
complementary item for the proposed benchmarking framework.

8.5.7 Fine Tuning Computation Management

Although the current version of CoBeFra allows to parallelize the calculation of
conformance checking metrics, it should be noted that executing too many tasks
at once may bias run time results of the metric. The current recommendation
is thus to keep the number of parallel executions below the amount of available
processing cores (the host operating system will then attempt to distribute each
metric as best as possible over the possible cores), but it is also possible to fur-
ther �ne tune the computational management by strictly binding a process to a
speci�c processing core and only allowing one metric execution per core. Fur-
thermore, we have indicated that an interesting possibility for future work is to
leverage the multi-process execution architecture so that conformance checking
metrics can be executed on a computing grid over a network. Finally, while the
current computation manager allows to set a time bound after which a metric
is automatically canceled, a second option could be added which sets a bound
on the amount of memory which may be consumed by a conformance checking
metric.

8.5.8 Cross-Validation

Cross-validation-based evaluation is not frequently applied in the area of pro-
cess mining, since process mining tasks are typically applied for descriptive,
rather than predictive analysis purposes. Furthermore, sensibly splitting a given

CHAPTER 8. COBEFRA 271

event log is not easy. Still, it should be possible to implement cross-validation
(or train/test splitting, jackkni�ng) methods in a conformance checking setting
by making guided decisions (instead of choosing randomly) when splitting the
event log.

8.5.9 Recommending Process Mining Techniques

With the large amount of process discovery techniques being proposed, there has
been a rising interest in the construction of recommendation engines to propose
suitable discovery techniques given the characteristics of the input event log and
the preferences of the end user [220–222].

Against this background, CoBeFra can be utilized as a suitable calculation engine
to construct a repository of performance metrics for discovery technique–event
log–conformance metric combinations. CoBeFra was recently applied as such
in [223].

8.6 Petri Net Based Event Log Generation

In this section, we introduce a ProM plugin which allows for straightforward
event log generation, using token-based simulation driven by Petri net models.
Although a large number of tools already exist for the simulation and analysis of
Petri nets (CPN Tools being among the most notable), no technique exists which
allows for the rapid generation of event logs (a collection of execution traces)
based on a user-supplied Petri net in a straightforward manner. Our proposed
tool focuses on ease of use, provides di�erent simulation strategies and con�gu-
ration options covering most standard use cases, and outputs the desired event
log in a format which can immediately be utilized in subsequent steps within a
process mining analysis work�ow.

This plugin was used to enable the construction of synthetic event logs in the
experiments included in this dissertation.

8.6.1 Rationale

Although event logs are regarded to be the focal point of analysis within the �eld
of process mining, no straightforward approach or tool exists to construct these

272 8.6. PETRI NET BASED EVENT LOG GENERATION

data repositories in a synthetic manner. However, such technique could be useful
in many academic and other use cases. To generate synthetic event logs, scholars
and practitioners have, so far, mainly resorted to using the following tools and
approaches:

Firstly, CPN Tools [224], which can be regarded as, by far, the most com-
plete and advanced suite for coloured Petri net modeling, simulation and
analysis, but comes with a steep learning curve and is hard to use in the
use case of modeling a (non-coulored) Petri net and deriving a collection
of simulated traces.

Second, the Process Log Generator [159], which randomly generates mod-
els based on user-supplied criteria and can also provide a related simulated
event log, but does not provide means to modify the generated model or
change simulation options.

The �nal approach consists of direct construction of event logs without
any formal semantic model driving a simulation, other than perhaps some
stochastic statistical process (e.g. randomly constructing traces from a
pool of activity labels). This last approach has the drawback that the con-
structed synthetic event logs are of less use, as process mining techniques
assume that there is some underlying process model driving the execution
of activities.

To help remedy this gap within the current o�ering of tools, we present a ProM
plugin which allows for straightforward event log generation using token-based
simulation driven by Petri net models. Our proposed tool focuses on ease of
use, provides di�erent simulation strategies and con�guration options covering
most standard use cases, and outputs the generated event logs in a native and
standardized XES format1, which can be immediately utilized in subsequent steps
within a process mining analysis work�ow.

8.6.2 Objectives

This subsection outlines a description of the purpose and applicative domain of
the tool.

1Extensible Event Stream, see: http://www.xes-standard.org/
xesstandarddefinition.

http://www.xes-standard.org/xesstandarddefinition
http://www.xes-standard.org/xesstandarddefinition

CHAPTER 8. COBEFRA 273

In a nutshell, the main objective of our developed tool was to o�er an easy way
to generate an event log from a given Petri net model which also enables user
to con�gure some general options relevant to process mining practitioners and
researchers, and outputs an event log which is directly useable in ProM without
having to perform any intermediary steps. Concerning the supplied Petri net,
we have deliberately chosen to regard the modeling of such models as being out
of scope for our plugin, as there exist many excellent tools already which allow
for the rapid modeling of such models, which can easily be imported in ProM.
However, the simulation of an event log in these tools is seldom supported in a
user-friendly manner.

The development of this plugin has followed from a real “need” experienced
when setting up experiments to compare the performance of process mining
discovery and other algorithms, which—in most scenarios—are composed out
of both real-life and synthetic event logs. We thus can enumerate our objectives
as follows:

Integration in ProM The plugin should be integrated into ProM, rather than
a stand-alone package, as the ProM framework is heavily utilized by pro-
cess mining researchers and practitioners.

Relevant Con�guration Options The plugin does not allow to modify sup-
plied Petri net models, as there exists many tools already supporting the
creation (and validation) of such models. However, the plugin should allow
to con�gure relevant options, such as the visibility of transitions.

Native Event Log Format Generated event logs should be created as XES
�les, the event log format native to ProM. Many tools already allow to gen-
erate event logs as key-value pairs, comma separated value (CSV) �les or
some proprietary format, which requires an additional ETL step to import
the data into ProM, which we want to avoid.

Ease of Use The plugin should be straightforward to use with sensible de-
faults.

8.6.3 Functionality

Our plugin is started from within ProM and expects only a Petri net object as an
input (which can easily be imported in ProM from many available �le formats,
such as PNML).

274 8.6. PETRI NET BASED EVENT LOG GENERATION

Figure 8.4 guides the reader through the various steps of the plugin. After ProM
is opened and a Petri net model has been imported, this Petri net is used as an
input object for the plugin, which can then be invoked. Figure 8.4(a) shows the
�rst con�guration panel, and allows one to con�gure the following general sim-
ulation options:

Simulation Method Available methods are: random generation, complete
generation or grouped path (distinct) generation. The �rst method ran-
domly executes enabled transitions (con�gurable with weights, see below)
in the Petri net until an end condition is reached. The second method
performs a complete exploration of the Petri net state graph to generate
all possible traces (bounded by the “Maximum times marking seen” op-
tion, see below), while the �nal method ensures the generation of distinct
traces, i.e. the same event log trace cannot be utilized twice.

Number of Generated Traces Amount of traces to generate (not available
for complete generation).

Mininum/Maximum Traces to Add for each Generated Sequence How many
“copies” of each generated trace should be added to the event log. The
number is uniformly chosen between the minimum and maximum. Default
is one (1) for minimum and maximum values, so the event log ends up
containing exactly the amount of traces as con�gured by the “Number of
generated traces”-option (for random and grouped path generation).

Maximum Times Marking Seen How many times the same marking may be
seen within a trace. This option bounds the amount of times a loop will be
followed in the process model.

Only Include Traces that Reach End State The simulation of a trace ends
whenever there is no enabled transition which can be executed anymore
(enabled traces might be available but prohibited by the “Maximum times
marking seen”-option). In this case, the sequence of transitions is con-
verted to a sequence of trace events and added to the event log. When
the “Only include traces that reach end state”-option is set, traces are only
added when there is a token in a sink place (a place not containing out-
going arcs). Naturally, when the users supplies a work�ow net, only one
such sink place is present.

Only Include Traces Without Remaining Tokens Same as above, but now,
traces are only added when all the tokens in the �nal marking are in a

CHAPTER 8. COBEFRA 275

sink place. The default option enables the latter two options, which serves
as a sensible default in most use cases to generate “valid”, expected traces.

The following con�guration screen, shown in Figure 8.4(b), allows to con�gure
global trace timing options. This includes:

Anchor Point A date/time stamp used as a point of reference in following
options.

Trace Movement Both “moving” and “�xed” traces are available. For �xed
traces, the initial start time for each trace is set equal to the given anchor
point. For moving traces, the starting point of the �rst trace is set equal
to the anchor point, but the starting point of each following trace is set to
the end (complete time of �nal activity) of the previous trace.

Variance Average and standard deviation in seconds to add variance to the
starting point of each trace. This allows e.g. for partial overlap or volatile,
randomized starting points.

The next con�guration screen in the wizard, depicted in Figure 8.4(c), allows to
map each Petri net transition to an activity label in the event log to be gener-
ated. Transitions can be set to invisible by leaving the label blank, and multiple
transitions can be mapped to the same label. The reason why we allow users to
do this is because not all Petri net modeling tools support saving Petri nets with
an explicit distinction between invisible and visible transitions, and so that users
can assign separate, understandable labels for duplicate transitions in a modeler
(e.g. “activityDup_1” and “activityDup_2”) while still mapping them to the same
event log activity (“activityDup”).

In addition, this screen also allows one to set transition “weights”, which allow to
drive the simulation towards choosing one enabled transition over others when
multiple choices are available. The chance to select a transition t ∈ T (all Petri
net transitions) at each step is thus:


0 if ¬enabled(t)

weight(t)∑
t∈T :enabled(t)weight(t)

if enabled(t)

Finally, for each transition, the user can also display a “timings”-window (see Fig-
ure 8.4(c)) which allows one to set averages and standard deviations for the lead

276 8.6. PETRI NET BASED EVENT LOG GENERATION

times (duration) and idle times (waiting time before an activity start) of activities.
The standard option inserts a �xed idle time of one minute between each activity
and only generates a “complete” event for each activity (atomic activities), which
is su�cient to generate event logs which can be used by the multitude of min-
ers and other analysis techniques. Finally, for each transition, the user can also
display a “resources”-window (see Figure 8.4(d)) which allows one to con�gure
the possible resources executing this activity, together with weightings. This is
bene�cial for users wanting to generate event logs to be used in social analysis
scenarios.

CHAPTER 8. COBEFRA 277

(a) Con�guring simulation options.

(b) Con�guring global trace timings.

Figure 8.4: Collection of screen shots depicting the various steps of the developed plugin.

278 8.6. PETRI NET BASED EVENT LOG GENERATION

(c) Con�guring activities and activity timings.

(d) Con�guring activity resources.

Figure 8.4 (continued): Collection of screen shots depicting the various steps of the
developed plugin.

CHAPTER 8. COBEFRA 279

(e) Generated event log opens in ProM

(f) Analyzing the generated event log using dotted charts.

Figure 8.4 (continued): Collection of screen shots depicting the various steps of the
developed plugin.

After �nishing the con�guration, the generation process is initialized. Once com-
pleted, the generated event log is opened in ProM (see Figure 8.4(e)), where it can
be further analyzed or exported to disk, using not only the XES �le format but
any format for which a ProM exporter is available. Figure 8.4(f) shows a dotted

280 8.6. PETRI NET BASED EVENT LOG GENERATION

chart analysis of the generated event log, illustrating at the same time the time
variance induced in the generated log.

8.6.4 Architecture and Use Cases

Our tool is build on top of the ProM framework and thus re-uses components of
the latter. In particular, handling of Petri net models and event log concepts is
based on ProM’s internal models, as to maximize interoperability with existing
plugins. Con�guration screens are shown using ProM’s default widgets.

To simulate traces from Petri nets, we make use of internally developed compo-
nents, rather than relying on external libraries. Our plugin does not utilize any
native components, and thus runs on every platform where Java and ProM are
available. Data interchange with other tools is provided using ProM’s standard
import/export mechanisms. That is, Petri nets are loaded in using ProM’s avail-
able �le readers, and generated event logs are opened natively in ProM until
the user is ready to export them. This also allows users to easily apply post-
generation steps such as event log noise generation by means of other plugins.

We believe our tool to be useful to scholars, practitioners and students working
in the �eld of process mining. The authors have already utilized the presented
plugin, both in research and educational settings. Some common use cases ben-
e�ting from generated synthetic logs include:

Performing empirical experiments using a controlled data set.

Constructing example data sets to use for educational purposes.

Constructing illustrative data sets to present to usefulness of analysis tech-
niques within a business context, where real-life data is not immediately
available (due to technical or other reasons, e.g. privacy concerns).

8.6.5 Comparison

This section brie�y compares our developed plugin against other tools and
techniques. We hereby keep in mind the core objectives of our tool, o�ering
a straightforward method to generate event logs from a Petri net in an environ-
ment familiar to process miners.

CHAPTER 8. COBEFRA 281

8.6.5.1 CPN Tools

CPN Tools is the most widespread and advanced tool for editing, simulating and
analyzing coloured Petri nets [224, 225]2. Although the latest versions have made
it easier to model a simple (non-coloured) Petri net, the particular user interface
of this tool comes with a rather steep learning curve. In addition, performing a
repeated simulation run which can be outputted to an event log requires some
setting up and extract-load-transform steps using ProMimport [33, 226]. Plugins
have also been made available in ProM which allow for more straightforward
generation of event logs from CPN models in ProM [227], though knowledge of
CPN modeling is still assumed (furthermore, in ProM 6.3 and CPN Tools 4.0—the
latest stable releases of both—the simulation plugins crash due to not being able
to handle the “real” data type of CPN models). By our plugin, we try to o�er a
simple alternative to CPN Tools when the ultimate goal is the generation of an
event log given a Petri net.

8.6.5.2 Process Log Generator

The Process Log Generator (PLG) is developed by Burattin et al. [159], and allows
users to generate random business processes by only specifying some simple pa-
rameters. The tool allows one to generate an event log from the generated pro-
cess model, but does not allow to make modi�cations to the randomized process
model or load in a Petri net designed in another modeler.

8.6.5.3 General Petri net Modeling Tools

Including ARIS, FileNet Designer, FLOWer, PIPE, Protos, Renew, WoPeD, Yasper
and other tools mentioned by the Petri Nets Tool Database [228]. A plethora of
Petri net oriented modeling tools exist, with PIPE [229], Renew [230], WoPeD [231,
232] and Yasper [233] being free, open and favored o�erings by the process
mining community. Many of these tools also allow to perform Petri net anal-
ysis, soundness veri�cation, and to play the Petri net “token game”. However,
although many of these tools fully support the semantics of Petri net-based
execution, they lack support to generate an event log as a whole using some
con�gurable parameters. The purpose of our plugin is not to replace these tools,

2See http://cpntools.org.

http://cpntools.org

282 8.7. A BENCHMARKING STUDY

as they are still to be used to model (and verify) the Petri net from which an
event log should be generated.

8.6.5.4 Other (Petri net oriented) Simulation Tools

Including Arena, FileNet Simulator, GPenSIM, HiPS, Petri .NET Simulator, State-
�ow, TINA. Other general purpose tools focus less on the modeling of Petri nets,
but more on the simulation perspective. However, by “simulation”, the statistical
analysis of Petri net models is meant, rather than simulating (and saving) exe-
cution traces. Users are able to retrieve far reaching reports concerning utiliza-
tion rates and mean durations, but no historic collection of traces can be saved.
Furthermore, many of these tools are advanced and come with a steep learning
curve.

8.6.5.5 Spreadsheets and Other Custom Ad-hoc Approaches

Users also resort to using spreadsheets (with macros and formulas) or program-
ming scripts against the OpenXES API to generate synthetic, randomized event
logs. However, the usability of such techniques is less proven, as there now
is no “true” process model driving the generation of traces. Furthermore, as
spreadsheet-based approaches lack the capability to output a native event log,
they also have to be converted to another format in a post-step.

A drawback of our proposed tool is that it currently only support event log gen-
eration from Petri net models, but given this representation’s popularity within
the area of process mining and the availability of conversion plugins which allow
to convert many other representational forms to a Petri net, this is not a limiting
problem in practice. In future version of the tool, however, we plan to incorpo-
rate ways to handle more advanced constructs, such as inhibitor and reset arcs,
in Petri nets. Other plans for future work incorporate: improving the look and
feel of the user interface, allowing to save and load simulation settings, selecting
custom distributions for random sampling of transitions, resources and timings.

8.7 A Benchmarking Study

This section presents a benchmarking study which was performed using the tools
presented above with the objective to uncover the relationship between event

CHAPTER 8. COBEFRA 283

log characteristics and process discovery techniques. Given the large amount of
process discovery algorithms being available, practitioners wanting to use pro-
cess mining in real-life applications and environments are confronted with a real
issue: having so many techniques available, it becomes di�cult to choose the
most appropriate one for a given situation without possessing a high amount
of knowledge about the workings of such techniques. This problem has already
been identi�ed in [124, 174], where the creation of benchmarks to compare the
performance of di�erent techniques has been labeled as one of the biggest chal-
lenges concerning process mining.

To tackle this issue, scholars have proposed frameworks [221] that help to com-
pare the performance of process discovery techniques, whereas others have fo-
cused on benchmarking the quality of those algorithms [47]. However, one im-
portant aspect to remark is that previous studies focused more on the algorithms
themselves together with their general performance, without going into much
detail on how they are in�uenced based on the characteristics of a given event log
(the starting point of analysis). In [124], the importance of these characteristics
is also mentioned. As such, this section aims to present a benchmarking study of
process discovery techniques which will help to understand the relation between
event log characteristics and the performance of a process discovery algorithm
and can aid process mining practitioners to make more well-educated choices
about the most suitable technique for di�erent scenarios. To do so, an in-depth
analysis on the in�uence that event log characteristics have on the performance
of process discovery techniques is presented. In addition, a comparative study
between techniques’ performances and accuracy in di�erent situations is also
carried out.

8.7.1 Related Work

The benchmarking of process discovery techniques is a problem which has not
been addressed extensively in the literature [124]. However, the need for such
studies is real and motivated by the proliferation of techniques and commercial
products that has been occurring recently [174].

The �rst attempt to come up with a framework that allows to benchmark process
discovery techniques was executed by Rozinat et al. [124, 234]. These studies aim
to reach a “common evaluation framework” which, under the assumption that the
log re�ects the original behavior, enables the comparison of a discovered model

284 8.7. A BENCHMARKING STUDY

with the event log from which it has been induced by means of conformance
analysis. After the groundwork had been set by these publications, other authors
utilized similar procedures to construct their frameworks. Weber et al. [222] de-
sign a procedure that evaluates the performance of process mining algorithms
against a “known grounded truth”, referencing to the original process models,
with known constructs, that are used to generate the event logs used for the
conformance analysis. Although having introduced concrete experiments on ar-
ti�cial process models, which allowed the comparison between the performances
of di�erent mining algorithms, only a small number of techniques and models
were evaluated (also taking into account a relatively small number of structural
properties).

After arguing that the procedure proposed to that date was time consuming
and computationally demanding (as this e�ort is proportional to the number of
algorithms and metrics considered), Wang et al. [220, 221] suggest a di�erent
approach. Their proposed methodology allows for a more scalable method as
the evaluation of the algorithms’ performance is done on a fraction of the pro-
cess models of a given company, making it possible to choose the most suitable
technique without having to mine all processes available. Finally, De Weerdt et
al. [47] include real-life event logs in their study, thus being the �rst authors to
consider such kind of logs. In addition, they propose the “F-score” metric as a
valid approach when evaluating the combination of di�erent accuracy dimen-
sions.

8.7.2 Methodology

As stated before, the motivation for our study is to understand the e�ect of the
characteristics of event logs on the performance of process discovery techniques,
allowing us to pinpoint practical guidelines that helps one making problem-
tailored decisions when opting for a process discovery technique.

An experiment was designed comprising of the following phases:

1. Phase 1: creation of synthetic process models and generation of event logs.

2. Phase 2: mining of generated event logs using broad collection of process
discovery techniques.

CHAPTER 8. COBEFRA 285

I

K

Y

R

W

K_inv

A

G

G_inv

B

O

Z

H

C

H
V

U

E

I

M

J
D

Figure 8.5: Eight process models with increasing complexity levels were designed for use
in the benchmarking study. The process model shown here is the most complex and
contains all included characteristics.

3. Phase 3: evaluation of the quality of the mined models according to the four
process model quality dimensions [124], using a collection of published
conformance checking metrics.

Before presenting the results of the study, the three phases in the experimental
setup are discussed in more detail in the following subsections.

8.7.2.1 Phase 1: Synthetic Model Construction and Event Log Generation

Eight process models with increasing complexity levels were designed. The fol-
lowing structural patterns, ordered by complexity, were taken into account: se-
quence, choice (i.e.: XOR split/join), parallelism (i.e.: concurrency, AND split/join),
loops (repetitions, recurrence), duplicate tasks (activities in the model bearing
the same label), non-free choice constructs (i.e. history dependent choices) and
�nally, nested loops. For each characteristic listed above, a process model was
constructed containing this characteristic, together with all characteristics from
less complex models, meaning that model eight (shown in Figure 8.5), the most
complex model designed, contains all listed characteristics.

Arti�cial event logs were generated (using the event log generator discussed
above) based on the eight designed process models with di�erent non-structural
characteristics, namely presence of noise (removed events, swapped events and
inserted events) and the size of the event log. Table 8.1 shows an overview of the
properties of the generated event logs for each process model.

286 8.7. A BENCHMARKING STUDY

Table 8.1: For each designed process model, four event logs were generated of di�erent
size, with and without noise to represent real-life scenario’s.

Small Medium Medium with Noise Large with Noise
Number of events 500 5000 5000 50000

Noise No No Yes Yes

8.7.2.2 Phase 2: Process Model Discovery

Twelve process discovery techniques are included in the study: Alpha Miner [55],
Alpha Miner+ [58], Alpha Miner++ [68], Heuristics Miner [86], Genetic Miner [65],
DT (Duplicate Tasks) Genetic Miner [66], DWS Miner [62], AGNEs Miner [2],
the Evolutionary Process Tree Miner [113], Causal Miner [43], ILP Miner [77]
and TS (Transition System) Miner [79]. The list of mining algorithms was con-
structed in such way so that all included process discovery techniques satisfy
the following requirements. First, their result should be represented in the form
of a Petri net or be transformable into one for the sake of clear and unambiguous
comparability. Second, algorithms should be publicly available and implemented
in the tools used for research, i.e. ProM 5 and ProM 6 [46], which were applied
to mine the models from the constructed event logs.

Concerning con�guration options, parameters for each discovery technique
were mostly kept to the default options. However, modi�cations were made
for the Heuristics Miner and Causal Miner. More precisely, the option “mine
long distance dependencies” was enabled for both, in order to enable to discov-
ery of these constructs. Also, both for Genetic Miner and DT Genetic Miner, the
“population size” was set to 10 and 100 for high and small/medium complexity
logs respectively, as to keep running time under control. For the Process Tree
Miner—another evolutionary algorithm—“population size” was also set to 10 and
the “maximum number of generations” to 50.

8.7.2.3 Phase 3: Conformance Checking and Statistical Analysis

In the third and �nal phase of the experimental setup, an exhaustive conformance
analysis is performed using a large amount of conformance checking metrics in
order to assess the quality of di�erent mined process models in respect with the
generated event logs based on four quality dimensions. Next, the results are
analyzed and compared using an exhaustive set of statistical tests.

CHAPTER 8. COBEFRA 287

Conformance Checking As we have discussed throughout this dissertation, con-
formance checking techniques demonstrate the representativeness of the discov-
ered process model and the behavior presented in the event log. Conformance is
typically measured across the following four quality dimensions [124]:

Fitness: the discovered model should allow for the behavior seen in the
event log.

Precision: the discovered model should not allow for behavior completely
unrelated to what was seen in the event log.

Generalization: the discovered model should generalize beyond the exam-
ple behavior seen in the event log.

Simplicity: the discovered model should be as simple as possible.

An overview of conformance checking metrics included in this study for each
quality dimension is provided in Table 8.2. The CoBeFra conformance checking
benchmarking suite was applied in order to facilitate the execution of the con-
formance checking phase in our study. It is important to note that virtually all
metric included in the study return a result in the range of [0, 1]. Most simplic-
ity metrics, however, except for Advanced Structural Appropriateness, return an
absolute value, indicating for instance a count. Therefore, we normalize these
values before performing the statistical analysis so that 0 corresponds with the
minimum (lowest) score obtained and 1 with the maximum (highest score).

Statistical Analysis After conformance analysis is performed between all mined
models and event logs, a set of statistical techniques is applied to evaluate the
results, enabling a robust and mathematical rigorous way of comparing the per-
formance of di�erent process discovery techniques (both in general and taking
into account speci�c event log characteristics).

In a �rst step, a one-way repeated measures ANOVA (Analysis of Variance) test
is executed, which is used to analyze the di�erences between the metrics results
for each quality dimension, that is, to assess whether the di�erent metrics “agree”
on their result.

Next, a regression analysis is performed to discover the relation between struc-
tural process model and event log properties and the performance of process

288 8.7. A BENCHMARKING STUDY

Table 8.2: Overview of conformance checking metrics included in the experimental setup.

Name Authors �ality Dimension
Fitness Rozinat et al. [99]

Fitness
Proper Completion Rozinat et al. [99]
Alignment Based Fitness Adriansyah et al. [110]
Behavioral Pro�le Conformance Weidlich et al. [104]
Behavioral Recall Goedertier et al. [2, 235]
Advanced Behavioral Appropriateness Rozinat et al. [99]

Precision

ETC Precision Muñoz-Gama et al. [105]
Alignment Based Precision Adriansyah et al. [109]
One Align Precision Adriansyah et al. [112]
Best Align Precision Adriansyah et al. [112]
Behavioral Precision De Weerdt et al. [107]
Alignment Based Probabilistic Generalization Adriansyah et al. [109] Generalization
Advanced Structural Appropriateness Rozinat et al. [99]

Simplicity

Average Node Arc Degree Mendling et al. [114, 236]
Count of Arcs Mendling et al. [114, 236]
Count of Cut Vertices Mendling et al. [114, 236]
Count of Nodes Mendling et al. [114, 236]
Count of Places Mendling et al. [114, 236]
Count of Transitions Mendling et al. [114, 236]
Weighted P/T Average Arc Degree Mendling et al. [114, 236]

discovery techniques, this for each discovery technique in each quality dimen-
sion, so that we can uncover main “driving factors” behind each process discov-
ery technique. Depending on the results of the previous ANOVA test, di�erent
response variables are used in the regression test: if the null hypothesis was ac-
cepted (no di�erence in means of metric results), the average of all metrics for
one dimension was used as the independent variable (with the di�erent charac-
teristics of logs and models as dependent variables). If the null hypothesis was
rejected, the independent variable is based on the result of a carefully selected
metric (or metrics) for the four quality dimensions, as it would be unfeasible to
incorporate all metrics together with each discovery technique.

Finally, a third test aims to compare the performance of di�erent process dis-
covery techniques in a robust manner. We apply a non-parametric statistical
approach towards the comparison of process discovery techniques as outlined
in [47, 237], encompassing the execution of a non-parametric Friedman test
followed by an appropriate post-hoc test. These non-parametric tests assume
ranked performances rather than actual performance estimates, calculating the
average ranks per treatment, under the null hypothesis of no signi�cant di�er-
ences between treatments, i.e. process discovery algorithms. If the null hypoth-
esis of equal performance across all treatments is rejected by the Friedman test,
we proceed with a post hoc Bonferroni-Dunn procedure, comparing one treat-
ment (the control treatment) to all others. This test thus compares the di�erent

CHAPTER 8. COBEFRA 289

process discovery techniques to the best performing one and assesses whether
or not the performances are similar.

8.7.3 Results

In this section the results derived from the di�erent analysis that were performed
are presented and dissected in order to come up with two major contributions:
�rst, an understanding of the correlation between event log characteristics and
technique’s performance and second: a comparative performance assessment of
available process discovery techniques.

8.7.3.1 Statistical Results

First, the results of the included statistical tests are provided. This allows both
to address the major goals of this research and to check the signi�cance analy-
sis of the results. A ranking of process discovery techniques according to their
conformance performance will be presented, followed by an analysis of run time
performance. Finally, the outcome of this benchmarking study is exposed as a
set of practical guidelines that are listed at the end of this section.

8.7.3.2 Comparing Conformance Checking Metric Result Similarity: ANOVA

The �rst statistical test performed was a one-way repeated measures ANOVA
(analysis of variance) test, with the goal of evaluating if the di�erent metrics
within the same dimension provide similar results. The null hypothesis is that av-
erages of all metrics (within one dimension) are equal, i.e. meaning that the met-
rics within this quality dimension “agree” with one another. This hypothesis was
rejected for all dimensions; all p-values were below a signi�cance level of 0.05.
A Mauchly test for sphericity [238] was performed followed by Greenhouse-
Geisser [239] and Huynh-Feldt [240] corrections to obtain valid F-ratios.

8.7.3.3 Driving Factors behind Process Discovery Algorithms: Regression

A linear regression analysis was performed to �nd the correlation between con-
formance checking metrics (dependent variable) and characteristics of both event

290 8.7. A BENCHMARKING STUDY

logs and models (independent variables) for each of the four quality dimensions
and for every process discovery technique. As the previous test showed that
there was a signi�cant variation between results from di�erent metrics, we de-
cide on conformance checking metrics for each of the four quality dimensions
to con�gure the dependent variable. This decision was driven by the following
criteria: �rst, the conformance metric should not result in too many missing val-
ues, indicating errors during execution or exceeding a run time limit of 24 hours.
Second, the metric should not always result in very high or low values. Third,
metrics which are described in more recent literature are preferred above ear-
lier approaches. Based on these criteria, the following metrics were chosen to
represent each quality dimension:

Fitness: Alignment Based Fitness (symbol used: Fa, Adriansyah et al. [110])
and Behavioral Recall (symbol used: Fb, Goedertier et al. [2, 235])

Precision: One Align Precision (symbol used: Pa, Adriansyah et al. [112])
and Weighted Behavioral Precision (symbol used: Pb)

Generalization: Alignment Based Probabilistic Generalization (symbol used:
Ga, Adriansyah et al. [109])

Simplicity: Weighted P/T Average Arc Degree (symbol used: S, Mendling et
al., Sánchez-González et al. [114, 236])

The results show that the values obtained by the conformance checking metrics
are indeed correlated with several event log characteristics. Table 8.3 provides
a summarized overview of the driving characteristics for all process discovery
algorithms for the four quality dimensions.

8.7.3.4 Comparative Performance Analysis of Process Discovery Algorithms:
Friedman and Bonferroni-Dunn

A Friedman test is applied in order to determine whether there is a signi�cant
di�erence in the performance of the discovery techniques, based on the ranking
of their quality results, using the same conformance checking metric for each
quality dimension as for the regression analysis. The results show that tech-
niques do not perform equivalently (null hypothesis rejected), this for all four
quality dimensions (using a 95% con�dence level and using the conformance

CHAPTER 8. COBEFRA 291

Table 8.3: Results of regression analysis, indicating the manner by which the di�erent
process discovery techniques are in�uenced by event log and process model characteris-
tics.

Characteristic Alpha
Miner

Alpha
Miner+

Alpha
Miner++

Heuristics
Miner

Genetic
Miner

DT Genetic
Miner

Choice S ↓ Pb ↓
S ↓

Fb ↑
Pb ↑

Pb ↑ Fa ↓
Pa ↓

Fa ↓
Pb ↓
G ↑

Parallelism Pb ↓ Pb ↑ Pb ↑
Loop Fa ↓ Fb ↓

Pb ↓
S ↑

Fb ↓
S ↑

Fa ↓ Fb ↓
Pa ↓ Pb ↓
G ↓
S ↑

S ↑ Fa ↑
Pa ↑

Fb ↑

Invisible Tasks
Duplicate Tasks Fa ↓

Pa ↓
Fa ↑ Fb ↑
Pa ↑ Pb ↑
G ↓

Non-free Choice Pa ↓Pb ↓
G ↓

Pb ↑
Fb ↑

Fa ↓ Fb ↑ Fa ↑
Pa ↑

S ↑

Nested Loop Fa ↓Fb ↓
Pa ↑
S ↑

Fb ↓
S ↑

Fb ↓
Pb ↓
S ↑

Fa ↓

Number of Traces Pb ↓ Fa ↑
Pa ↑

Fa ↑
G ↓
S ↓

Number of
Distinct Traces

Pa ↑ Fa ↑

Number of Events Pb ↑ Fa ↓
Pa ↓

Fa ↓ Fb ↑
G ↑
S ↑

Minimum Trace
Length

Fa ↓
Pa ↑
S ↑

Fb ↓
Pb ↓
S ↑

Fb ↓
Pb ↓
S ↑

Fa ↑
Pa ↑

Fa ↑ Fb ↓
G ↑

Average Trace
Length

Fa ↑Fb ↑
Pa ↓
S ↓

Fb ↑
Pb ↓
S ↓

Fb ↑
Pb ↑
S ↓

Fa ↑ Fa ↓
Pa ↓

Maximum Trace
Length

Fb ↑
S ↓

Fb ↑
S ↓

Fb ↑
S ↓

Fb ↓ Fb ↓

Noise S ↑ Fb ↓
Pb ↑

S ↑ Fb ↓
Pb ↓
S ↑

Fa ↑

Number of
Activities

Fa ↓Fb ↓
Pa ↑
S ↑

Fb ↓
Pb ↓
S ↑

Fb ↓
Pb ↓
S ↑

Fa ↓
Pb ↓
S ↑

Pa ↑ Fa ↓ Fb ↓
Pa ↓ Pb ↓
G ↓

292 8.7. A BENCHMARKING STUDY

Table 8.3 (continued): Results of regression analysis.
DWS Miner AGNEs

Miner
TS Miner ILP Miner Causal

Miner
Process

Tree Miner
Characteristic

Fa ↓
Fb ↑

Pa ↑
S ↓

Fa ↑
Pa ↑
G ↑

Choice

Fb ↑ Parallelism
Fa ↑
Pb ↓
S ↑

S ↑ Fa ↓ Fb ↓
Pa ↑ Pb ↓
S ↓

Fa ↓
Pa ↓ Pb ↓
G ↓

S ↑ Loop

Invisible Tasks
Fa ↓
Pa ↓

Pb ↓ Fa ↑ Fb ↑
Pb ↓
S ↓

Fa ↓
G ↓

Duplicate Tasks

Fa ↑ Fb ↑
Pb ↓

Fb ↓
Pb ↓

Fb ↓
Pa ↓ Pb ↓
S ↑

Fa ↓
Pa ↓
G ↓

Fa ↓ Fb ↓
Pb ↓
S ↑

Non-free Choice

Fa ↑ Fb ↓
Pb ↓
S ↑

Fb ↓
S ↑

Pb ↓
S ↓

Fa ↓
Pa ↓
G ↓

S ↑ Nested Loop

Fb ↑ S ↑ Number of Traces
Fa ↑ Fb ↓
Pb ↓

Pb ↓
S ↑

Pa ↑
Fa ↑

G ↑
S ↑

Fa ↑ Number of
Distinct Traces

Fb ↓
Pa ↑

S ↑ Number of Events

Fa ↑ Fb ↓
Pa ↓ Pb ↓
S ↑

Fb ↓ Fa ↓ Fb ↓
Pa ↓ Pb ↓
S ↑

Fa ↓
Pa ↓
G ↓
S ↑

Fa ↑ Minimum Trace
Length

Fa ↓ Fb ↑
Pb ↑
S ↓

Fb ↑ Fa ↑
Pa ↑
G ↑
S ↓

Fa ↓ Average Trace
Length

S ↓ S ↑ S ↓ Maximum Trace
Length

Pa ↓
S ↑

Pb ↓
S ↑

Noise

Fa ↑ Fb ↓
Pb ↓
S ↑

Fb ↓
S ↑

Pa ↓
S ↑

Fa ↓
Pa ↓
G ↓
S ↑

Fa ↑
S ↑

Number of
Activities

CHAPTER 8. COBEFRA 293

checking values obtained by the metrics selected in Subsection 8.7.3.3 to establish
the rankings). We thus perform post hoc Bonferroni-Dunn tests for all quality
dimensions.

Table 8.4 depicts an overview of the obtained results. For each quality dimen-
sion, the average rank for each process discovery technique is depicted (a higher
rank indicates better performance), with the best performing technique shown
in bold and underlined. Techniques which do not di�er signi�cantly at the 95%
con�dence level from the best performing technique are shown in bold. From
this table, a tradeo� between �tness/generalization on the one hand and sim-
plicity/precision on the other hand becomes apparent for many discovery tech-
niques. These results point to the di�culty of having process discovery tech-
niques which perform well for all four quality dimensions [218]. In addition,
observe the di�erences between the rankings obtained by di�erent conformance
checking metrics within the same quality dimension. This again points to the
fact that metrics do not necessary agree on the way they perform their quality
assessment. As such, many opportunities for improvement and further research
remain in this area.

8.7.3.5 Evaluation of Run Time

Although not explicitly included in this study, for many real-life applications,
the time required to perform a discovery procedure is a critical issue. Motivated
by this fact, the run time for each algorithm was recorded. Although the run-
ning time was not included in a statistical test as-is, the average speed of each
discovery technique was taken into account to formulate the practical guidelines
below.

8.7.4 Recommendations towards Choosing a Process Discovery
Technique

Taking into consideration both general performance results (from the Friedman
and Bonferroni-Dunn tests), the in�uence of event log and process model based
characteristics (from the regression analysis) and timing issues, initial, general
recommendations for choosing an appropriate process discovery technique are
formulated.

294 8.7. A BENCHMARKING STUDY

Table 8.4: Bonferonni-Dunn rankings for process discovery techniques. For each quality
dimension, the average rank for each process discovery technique is depicted (1 being
the lowest rank). Techniques which do not di�er signi�cantly at the 95% con�dence level
from the best performing technique are in italics type.

Fitness Generalization
Alignment Based Fitness Behavioral Recall Alignment Based Pr.Generalization

ILP Miner (9.75) ILP Miner (11.11) AGNEs Miner (9.36)
AGNEs Miner (9.64) Heuristics Miner (9.61) ILP Miner (9.34)
Causal Miner (9.31) Alpha Miner+ (9.45) TS Miner (8.53)
DWS Miner (8.72) AGNEs Miner (8.89) Heuristics Miner (8.42)

Heuristics Miner (8.59) DWS Miner (8.77) DWS Miner (8.28)
TS Miner (8.48) TS Miner (6.69) Causal Miner (7 .95)

Region Miner (6.80) Genetics Miner (6.56) Alpha Miner (7 .22)
Process Tree Miner (6.34) Alpha Miner (6.28) Process Tree Miner (7 .06)

Alpha Miner (6.30) Alpha Miner++ (6.17) Alpha Miner++ (6.28)
Genetics Miner (5.77) Causal Miner (5.28) Genetics Miner (6.00)
Alpha Miner++ (5.11) DT Genetics Miner (4.77) Region Miner (5.83)

DT Genetics Miner (4.83) Region Miner (4.08) DT Genetics Miner (4.80)
Alpha Miner+ (1.36) Process Tree Miner (3.34) Alpha Miner+ (1.92)

Simplicity Precision
Weighted P/T Average Arc Degree One Align Precision Behavioral Precision

Alpha Miner+ (11.07) AGNEs Miner (10.34) DWS Miner (10.09)
DT Genetics Miner (8.52) DWS Miner (9.20) AGNEs Miner (9.38)

AGNEs Miner (7.12) Alpha Miner (8.75) Causal Miner (8.97)
Causal Miner (6.93) ILP Miner (8.67) Alpha Miner (8.78)

DWS Miner (6.72) Heuristics Miner (8.61) Heuristics Miner (8.44)
ILP Miner (6.72) Causal Miner (7 .83) ILP Miner (8.27)

Alpha Miner++ (5.43) TS Miner (7 .78) Alpha Miner++ (7.45)
Region Miner (5.26) Alpha Miner++ (7.48) TS Miner (7.11)

Heuristics Miner (5.24) Region Miner (6.20) Genetics Miner (6.30)
Alpha Miner (4.79) Genetics Miner (5.52) Process Tree Miner (5.14)

Genetics Miner (4.41) Process Tree Miner (5.09) Region Miner (4.11)
Process Tree Miner (4.09) DT Genetics Miner (4.33) DT Genetics Miner (4.09)

TS Miner (3.59) Alpha Miner+ (1.19) Alpha Miner+ (2.88)

CHAPTER 8. COBEFRA 295

After considering all quality dimensions from an overall perspective, the fol-
lowing process discovery techniques are recommended. First, Heuristics Miner,
which o�ers fast run time with acceptable quality results. Next, DWS Miner,
which was found to be somewhat slower but also o�ers good quality results.
Third, ILP Miner o�ers high quality levels but comes with very high run times
and memory requirements as event logs become more complex. Finally, AG-
NEsMiner also presents a slower run time for large models, but is also able to
reach good quality levels.

Naturally, it is possible to �ne tune the selection of a discovery algorithm in case
the quality dimension of interest (or quality priorities) are known beforehand,
this even more so when the conformance checking metric which will be applied
is known to the end user as well. Since we do not assume such prior knowledge,
we limit our recommendations to a general listing only. Similarly, if the charac-
teristics of the event logs are known beforehand, it also useful to identify which
techniques are best able to handle these properties, based on the results shown
in Table 8.4. As such, the results presented in this section are preliminary work.
As we indicated earlier, there has been a rising interest recently in construct-
ing recommender systems to recommend a process discovery algorithm based
on the characteristics derived from a given event log, possibly in combination
with user preferences regarding which aspects they assign more importance to
(speed, �tness, etc.). We refer to [220, 221, 241, 242] for further reading on the
topic of process discovery technique recommendation systems.

296 8.7. A BENCHMARKING STUDY

297

Chapter 9

Conclusions

“So now as I’m leaving
I’m weary as hell

The confusion I’m feeling
Ain’t no tongue can tell
The words �ll my head

And they fall to the �oor
If God is on our side

He’ll stop the next war.”
– Bob Dylan

9.1 Overview

This thesis has outlined a number of novel techniques, implementations and ap-
plications in the domain of process mining. In the �rst part of the dissertation,
we have discussed an improved arti�cial negative event generator, and subse-
quently enhanced this technique with a scoring mechanism to assign a measure
of con�dence to induced negative events. These induced negative events were
then applied in a conformance checking setting, as they allow us to develop a
comprehensive conformance checking framework in line with standard machine
learning practices, allowing to assess the recall, precision and generalization of a
process model. Finally, we have also indicated how arti�cial negative events can

298 9.1. OVERVIEW

be applied to uncover implementation problems by using them as highlighters
of unobserved behavior.

In the second part of the dissertation, we have outlined a number of additional
contributions which are not directly related to the concept of arti�cial negative
events. In particular, a novel heuristic process discovery technique was pre-
sented, based on a long lineage of related process discovery algorithms, but with
a particular focus on robustness and �exibility. Based on replay strategies de-
veloped throughout the �rst part of the thesis, an event-granular conformance
analysis technique was presented which can be applied towards enabling real-
time monitoring of business activities. Next, a technique for explaining event
log cluster solutions on an instance-granular level was proposed, and �nally,
a benchmarking framework was developed to enable the automated set-up of
large-scale conformance analysis experiments.

We summarize the contributions of our work as follows:

An improved arti�cial negative event induction technique was introduced,
extending earlier approaches [1–3].

The developed technique was extended based of the concept of a weighted
arti�cial negative event. The initial improved generation technique was
greatly extended and optimized, and an empirical evaluation experiment
has underlined the validity of the scoring metric used towards assigning
a weighting to arti�cial negative events in a manner which is robust to
incompleteness and noise.

Based on the concept of weighted arti�cial negative events, a comprehen-
sive conformance checking framework was presented, which is able to as-
sess the recall, precision and generalization quality dimensions of process
models in a robust, integrated, and scalable manner. We have developed a
number of replay strategies and negative event evaluation methods to im-
plement the conformance checking framework. In a benchmarking study,
our developed metrics were compared with other related works.

Finally, we have indicated how the concept of arti�cial negative events
can be applied as a detection mechanism for unobserved behavior. We show
how this can help to highlight implementation problems, both for proce-
dural and declarative process models. This idea forms the basis of a more
comprehensive event existence classi�cation framework.

CHAPTER 9. CONCLUSIONS 299

We have presented Fodina, a novel heuristic process discovery technique,
based on a long lineage of related process discovery algorithms, but with
a particular focus on robustness and �exibility. The technique is able to
discover the construct of duplicate activities, and a benchmarking study
con�rmed the robustness and scalability of the technique for both syn-
thetic and real-life event logs.

Based on the replay strategies developed throughout the �rst part of the
thesis, an event-granular conformance analysis technique was presented.
The technique can be applied towards enabling real-time monitoring of
business activities. By applying the concept of process model decompo-
sition, the technique is able to localize deviations in a more precise and
�ne-grained manner and the technique can be ran in a distributed man-
ner.

We have introduced SECPI (Search for Explanations for Clustered Process
Instances), a algorithm for explaining event log cluster solutions on an
instance-granular level.

Finally, we have developed and presentedCoBeFra (Comprehensive Bench-
marking Framework): a technique devoted to enable the automated set-up
of mass-scale conformance analysis experiments. We have also presented
a developed Petri net based event log generation technique which enables
to rapidly construct a set of synthetic event logs for use within experimen-
tal setups and we outlined the results of a benchmarking study aiming to
uncover the relationship between process discovery techniques and event
log characteristics.

All the developed tools and techniques were implemented and tested on
both synthetic and real-life logs and made available for public use.

9.2 Future Work

Regarding possibilities for future work, we refer to the di�erent chapters in this
dissertation to obtain a detailed overview. In general, we can summarize possi-
bilities for future work as follows:

For the arti�cial weighted negative event generation techniques: experimen-
tation with con�guration parameters regarding arti�cial negative event
induction, e.g. the inclusion of a noise-related threshold.

300 9.2. FUTURE WORK

For the conformance checking framework based on arti�cial weighted neg-
ative events: extending the framework so it can be applied on any pro-
cess model representation language for which event-granular execution
semantics can be de�ned (either heuristic or not).

For Fodina: extending the algorithm so that it takes into account nega-
tive events during the discovery phase, e.g. by modifying the dependency
metrics. Experiment with additional item-set based techniques for the de-
termination of duplicate activities.

For the real-time decomposed conformance analysis: setting up a case study,
adapting the technique so it can deal with an event stream without events
carrying a case identi�er, adapting the technique so it can be used as a
recommendation engine (i.e. enabling “self-healing processes”).

For SECPI : experimenting with di�erent attribute templates, and setting
up a thorough study to analyze clustering algorithm behavior.

For CoBeFra: o�ering CoBeFra in a service-oriented manner, investigating
how to framework can be adapted towards process discovery, investigating
which changes can be made to the ProM framework to allow for better
setup of batch experiments.

For the Petri net based event log generator : allowing for more con�gurable
regarding timings and arrival time and duration distributions. The inclu-
sion of event log generation functionality in an existing tool can be con-
sidered.

Lastly, a number of published works which came to fruition in the context of this
dissertation were not included. The interested reader is referred to the publica-
tion list at the end of this dissertation for a detailed overview.

301

End Matter

303

List of Figures

1.1 Process mining models and analyzes the (organizational) context in which
it is applied, supported and controlled by information systems, which pro-
cess mining hence tries to improve and optimize. To do so, process mining
starts from process-related data as stored in so-called event logs, which are
recorded and stored by aforementioned information systems. (Adapted
from [4].) . 5

1.2 Process mining task are frequently categorized into three broad types:
process discovery, conformance checking and process enhancement. . . . 6

1.3 Process mining on the boundary between process related and data ori-
ented techniques: connecting BPM, simulation, operations research, data
mining, and others. (Figure adapted from [8].) 10

1.4 The BPM life cycle [7]. 11

2.1 Two parallel length one loops make the induction of parallelism challenging. 38

2.2 Deriving locality from parallelism. 39

2.3 Calculating parallel variants for a trace based on derived structural infor-
mation. 40

2.4 Generating arti�cial negative events for an event log with two traces. . . . 42

2.5 Calculating loop variants for a trace based on derived structural information. 46

2.6 Generating arti�cial events for an event log containing recurrent behavior.
Without the loop variant calculation extension, incorrect negative events
are introduced in the event log, even although the window size parameter
is set to 1. 48

2.7 The driverseLicenseLoop process. 54

304 LIST OF FIGURES

3.1 An event log exampleLog together with �ve process models. The pro-
cess models illustrate the impact of the four quality dimensions: �tness,
precision, generalization and simplicity. Here, the event log and the per-
fectModel are shown. 62

3.2 Illustration of a su�x tree built over an event log L. We illustrate the
lookup of a window 〈x,d, f〉. The window is iterated from right-to-left.
Activities f and d are found (green arrows on the left—dark gray in gray
scale), but no edge to x exists, so that the matching window length evalu-
ates to 2 for this comparison. 68

3.3 Overview of generated arti�cial negative events with their calculated
weights. White colored bars represent correct negative events as indi-
cated by the reference model, whereas black coloring indicates incorrect
negative events. The distributions show that, for most candidate negative
events, the weighting technique is able to correctly and unambiguously
indicate whether the negative event is valid (weight of 1) or invalid (weight
of 0). 72

3.4 Evolution of arti�cial negative event weights in comparison with event log
completeness, averaged over twenty iterations with the 95% con�dence
interval shown above and below the average. Negative events with low
weights are refuted as additional traces are added (i.e. reach a weight of
0) whereas negative events with higher weights remain stable. 76

3.5 Screen capture implemented ProM plugin. The left panel shows the (dis-
tinct) trace variants contained in the given event log. The right panel
shows key metrics obtained from the replay/evaluation procedure. The
bottom panel allows users to step through events and inspect which tran-
sitions were (force) �red accordingly. Finally, the main central area con-
tains the Petri net itself. Transitions are annotated with values corre-
sponding with the number of times the transition occurred as a true/false
positive/negative or as an allowed or disallowed generalized event. Tran-
sitions and places are also color-coded to allow users to quickly see where
and why conformance problems occur. 81

3.6 An additional plugin was developed to inspect to weighting distribution
of negative and generalized event in a visual manner. 81

3.7 Run times (averaged over twenty iterations) of evaluated conformance
checking techniques over various log sizes. The grey bands indicate the
95% con�dence intervals below and above the means. 88

3.8 Run times (averaged over twenty iterations) of (weighted) arti�cial nega-
tive event procedure over various log sizes, illustrating the speed bene�t
obtained by our technique compared to the original arti�cial negative in-
duction method. The grey bands indicate the 95% con�dence intervals
below and above the means. 90

LIST OF FIGURES 305

3.9 Results of evaluated conformance checking techniques (averaged over
twenty iterations) over various log sizes. The grey bands (narrow) indi-
cate the 95% con�dence intervals below and above the means. 92

3.10 A simple process model used as an illustration for trace replay. 93

3.11 A simple process model used as an illustration for trace replay (invisible
activity added). 94

3.12 A simple process model used as an illustration for trace replay (another
example with invisible activity). 95

3.13 A simple process model used as an illustration for trace replay (duplicate
activity). 95

3.14 Derived cuto� threshold for distinguishing between (in)correct negative
events as derived by a two gaussian mixture model. The gray lines indicate
density plots of the negative events based on their true status, whereas
the black lines denote the two �tted gaussians, with the overlap point
indicated as a vertical line. Note that the “true” status is shown only for
completeness; naturally, it is not taken into consideration when deriving
the threshold. 114

3.15 Evolution of arti�cial negative event weights in comparison with event
log noisiness. The gray lines denote weights after infrequent traces were
removed in the event log used to build the su�x tree. 119

4.1 Unobserved events can help to highlight permitted and expected paths in
the process map which were not followed in real-life, highlighting imple-
mentation issues and other discrepancies. 126

4.2 Schematic overview of behavior found when comparing a process model
with real-life event log data. Permitted behavior is constrained by a pro-
cess model, which is then compared with the behavior seen in the event
log. Area “a” corresponds with behavior allowed by the process model but
not evidenced by real-life data—indicating a completeness issue, whereas
area “c” indicates real-life behavior which was rejected by the process
model—indicating correctness issues. Area “b” corresponds with normal,
allowed and seen behavior. Area “d” corresponds with rejected behavior,
but which was also not observed in the event log. 128

4.3 Insurance claim handling process model used to generate example event
log. 134

5.1 Some complex event logs result in process models containing unconnected
tasks or tasks which are not on a path from the starting to ending task. . . 155

306 LIST OF FIGURES

5.2 Non-�tting Heuristics net for the trace 〈start,a,a,a,b,a,a,a, end〉.
Arcs leaving from and joining in the tasks represent an AND-split/join.
The diamond shaped gateways represent XOR-splits/joins. 156

5.3 An original Petri net model and result after mining on generated event log
and converting to Petri net with Heuristics Miner. 159

5.4 An original Petri net model and result after mining on generated event log
and converting to Petri net with Heuristics Miner. 160

5.5 An original Petri net model and result after mining on generated event log
and converting to Petri net with Heuristics Miner. 162

5.6 Two examples to illustrate di�erences in process model quality. 164

5.7 Di�erent dependency graph outcomes obtained with the Fodina miner
under various con�gurations for the trace 〈start,a,a,a,b,a,a,a, end〉. . 170

5.8 Conversion possibilities between process model representation formats. . . 182

5.9 Scalability results for Fodina compared to (Flexible) Heuristics Miner
(ProM 6). The e�ects of total log size, distinct log size, number of ac-
tivities and trace length were investigated. The results show that Fodina
performs faster than comparable technique. This �gure shows run times
as depending on log size and distinct log size. 190

5.10 Screen captions illustrating discovery features of BPMN Miner. 200

6.1 Architectural overview of the developed real-time decomposed confor-
mance analysis technique. 217

6.2 ”Open and register transaction” SESE-component from the case example
in Figure 6.5. STRR and FTRR are the entry and exit boundary nodes of
the SESE-component, respectively. The rest of places and transitions are
interior nodes of the SESE-component. 219

6.3 Screen capture of the developed real-time event conformance analysis
prototype. A global overview of the model being checked against, error
rates per submodel, and general statistics are reported. Our real-time ap-
proach allows to immediately react once a certain (user-con�gurable) cri-
teria are triggered, such as model fragments (or speci�c activities) reach-
ing a certain failure threshold. 224

6.4 High level overview of the running example process, structured in sub-
processes. 225

6.5 Running example: �nal valid SESE-decomposition. The substructures are
named according to Figure 6.4. 227

LIST OF FIGURES 307

6.6 In the �rst scenario, the Check Authority Serial Number (CASN) activity is
skipped for some process instances, causing the CPC activity to fail, due to
a missing input token which was expected to be present and placed there
by the execution of CASN. The �gure depicts the error localized in the
a�ected model fragment; the graph depicts the cumulative and running
amount of violations detected within this fragment. 228

6.7 In the second scenario, the preliminary pro�le check for receivers is
skipped (SRPP to FRPP), causing either the REPP or EPP activities to fail.
The �gure depicts the error localized in the a�ected model fragment; the
graph depicts the cumulative and running amount of violations detected
within this fragment. 229

6.8 Comparison of replay performance for the included techniques in the ex-
perimental setup, showing the time taken per technique to replay the
given event log. 230

7.1 Overview of SECPI: for each process instance (PI) in the event log, one or
more explanations are learnt and ranked according to their length. An ex-
planation is a simple if-then rule with a conjunction of characteristics (as
few as possible) which should not be present (i.e. set to zero) in order for
the instance to rather belong to a di�erent cluster. The SECPI implemen-
tation is capable of visually re�ecting these key determinants of cluster
membership in the respective process models, as illustrated on the right
hand side. 242

7.2 Screenshot of implemented SECPI plugin. 247

8.1 Quality dimensions for evaluating procedural process models 257

8.2 Schematic overview of the CoBeFra architecture. 264

8.3 Screen captures of the CoBeFra user interface. 268

8.4 Collection of screen shots depicting the various steps of the developed
plugin. 277

8.5 Eight process models with increasing complexity levels were designed for
use in the benchmarking study. The process model shown here is the most
complex and contains all included characteristics. 285

308 LIST OF FIGURES

309

List of Tables

1.1 Overview of well-known existing process discovery algorithms. 22

1.2 Overview of well-known conformance checking algorithms. . . . 26

2.1 Used parameter setting con�gurations for the arti�cial event gen-
eration tests. 55

2.2 Results of the driversLicenseLoop experiment under various con-
�gurations. 57

3.1 Characteristics of event logs and reference models used in the
weighted arti�cial negative event validation setup. 70

3.2 Conformance checking measures included in the experimental
setup. 83

3.3 Obtained values and run times (in seconds) for the evaluated re-
call metrics. 85

3.4 Replay strategy: heuristic replay with one step look-forward.
This replayer iterates over various candidate transition sets (top
to bottom row). 98

3.5 Impact of various replay strategies and negative event evaluation
schemes for perfectModel. 107

3.6 Impact of various replay strategies and negative event evaluation
schemes for singleModel. 108

310 LIST OF TABLES

3.7 Impact of various replay strategies and negative event evaluation
schemes for �owerModel. 109

3.8 Impact of various replay strategies and negative event evaluation
schemes for stackedModel. 110

3.9 Impact of various replay strategies and negative event evaluation
schemes for connectedModel. 111

3.10 Comparison of window pre�x based weighted arti�cial negative
event generation with activity bag based induction strategy. . . . 116

4.1 An insurance claim handling process instance from the example
supplemented with arti�cially generated negative events. 135

4.2 The combination of the “actual business event” and “recorded
event” criteria leads to the derivation of four primary event type
categories. 140

5.1 Overview of heuristic process discovery algorithms. 147

5.2 Structural log characteristics for event logs included in experi-
mental setup. Remark that some tabulated means or trace lengths
are higher then the con�gured values for the “permutations” and
“random” logs, as arti�cial start and end tasks were added before
and after each generated trace, thus increasing the length of each
trace by 2. 179

5.3 Results of the Fodina conformance checking experiment. This
table lists the results for the ICS Fitness metric. 185

5.4 Results of the Fodina conformance checking experiment for the
simplicity metrics (number of arcs, places and transitions respec-
tively). 188

5.5 Results of the Fodina conformance checking experiment for the
Fitting Single Trace Measure metric. 189

5.6 Key characteristics of process modeling notations for the purpose
of process discovery. 197

LIST OF TABLES 311

5.7 Results of the Fodina conformance checking experiment. This
table lists the results for the Average Alignment Based Trace Fit-
ness metric. 203

5.8 Results of the Fodina conformance checking experiment. This
table lists the results for the One Align Precision metric. 204

5.9 Results of the Fodina conformance checking experiment. This
table lists the results for the Best Align Precision metric. 205

5.10 Results of the Fodina conformance checking experiment. This
table lists the results for the ETC Precision metric. 206

5.11 Results of the Fodina conformance checking experiment. This
table lists the results for the Behavioral Recall metric. 207

5.12 Results of the Fodina conformance checking experiment. This
table lists the results for the Weighted Behavioral Precision metric. 208

5.13 Results of the Fodina conformance checking experiment. This
table lists the results for the Weighted Behavioral Generalization
metric. 209

5.14 Results of the Fodina conformance checking experiment. This
table lists the results for the ICS Fitness metric. 210

5.15 Results of the Fodina conformance checking experiment. This
table lists the results for the simplicity metrics. 211

5.16 Results of the Fodina conformance checking experiment. This
table lists the results for the Fitting Single Trace Measure metric. 212

7.1 Available trace clustering techniques and their characteristics. . . 236

7.2 Event logs used in experimental setup with their characteristics. 248

7.3 Results of the experimental evaluation comparing SECPI with
C4.5 and RIPPER. In general, SECPI is capable of striking a bet-
ter balance between accuracy and comprehensibility, in this case
represented by the classi�cation accuracy and the average expla-
nation length. This table shows the results for 3 clusters. 249

312 LIST OF TABLES

8.1 For each designed process model, four event logs were generated
of di�erent size, with and without noise to represent real-life sce-
nario’s. 286

8.2 Overview of conformance checking metrics included in the ex-
perimental setup. 288

8.3 Results of regression analysis, indicating the manner by which
the di�erent process discovery techniques are in�uenced by
event log and process model characteristics. 291

8.4 Bonferonni-Dunn rankings for process discovery techniques. For
each quality dimension, the average rank for each process discov-
ery technique is depicted (1 being the lowest rank). Techniques
which do not di�er signi�cantly at the 95% con�dence level from
the best performing technique are in italics type. 294

313

Bibliography

[1] Stijn Goedertier, David Martens, Bart Baesens, Raf Haesen, and Jan Vanthienen. Process mining as
�rst-order classi�cation learning on logs with negative events. In ter Hofstede et al. [243], pages 42–53.

[2] Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens. Robust process discovery with
arti�cial negative events. Journal of Machine Learning Research, 10:1305–1340, 2009.

[3] S. Goedertier. Declarative Techniques for Modeling and Mining Business Processes. Phd thesis, Katholieke
Universiteit Leuven, Faculty of Business and Economics, Leuven, September 2008.

[4] Wil M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhancement of Business Processes.
Springer, 2011.

[5] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data mining, inference and
prediction (2nd edition). Springer Science, New York, 2009.

[6] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-Wesley, 2005.
[7] Jan Vom Brocke and Michael Rosemann. Handbook on Business Process Management: Strategic Alignment,

Governance, People and Culture. Springer, 2010.
[8] wedowebsphere.de. Process mining koryphäe wil van der aalst im gespräch mit wedowebsphere.

http://wedowebsphere.de/news/process-mining-koryph%C3%
A4e-wil-van-der-aalst-im-gespr%C3%A4ch-mit-wedowebsphere, 2014.

[9] Betsi Harris Ehrlich. Transactional Six Sigma and Lean Servicing: Leveraging Manufacturing Concepts to
Achieve World-Class Service. CRC, 2002.

[10] Motorola Inc. Motorola University, Six Sigma in Action.
http://www.motorola.com/motorolauniversity, consulted on January 18, 2007, 1986.

[11] P. Nonthaleerak and L. Hendry. Exploring the Six Sigma phenomenon using multiple case study evidence.
International Journal of Operations & Production Management, 28(3):279–303, 2008.

[12] Geo� Tennant. Six Sigma: SPC and TQM in manufacturing and services. Gower Publishing, Ltd., 2001.
[13] Matteo Golfarelli, Stefano Rizzi, and Iuris Cella. Beyond data warehousing: what’s next in business

intelligence? In Il-Yeol Song and Karen C. Davis, editors, DOLAP, pages 1–6. ACM, 2004.
[14] Christophe Mues, Bart Baesens, and Jan Vanthienen. From knowledge discovery to implementation:

Developing business intelligence systems using decision tables. In Klaus-Dieter Altho�, Andreas Dengel,
Ralph Bergmann, Markus Nick, and Thomas Roth-Berghofer, editors, Wissensmanagement, pages 439–443.
DFKI, Kaiserslautern, 2005.

[15] D. Martens, J. Vanthienen, S. Goedertier, and B. Baesens. Placing process intelligence within the business
intelligence framework. In Proceedings of the 6th International Conference on Information and Management
Sciences (IMS 2007), 2007.

[16] Daniela Grigori, Fabio Casati, Malú Castellanos, Umeshwar Dayal, Mehmet Sayal, and Ming-Chien Shan.
Business process intelligence. Computers in Industry, 53(3):321–343, 2004.

[17] Michael zur Mühlen and Robert Shapiro. Business process analytics. In Handbook on Business Process
Management: Strategic Alignment, Governance, People and Culture. Springer, 2009.

[18] Edward Peters. Business process analytics – presentation. www.oc.com, 2007.
[19] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques with Java

Implementations. Morgan Kaufmann, 1999.
[20] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. Knowledge discovery and data mining:

Towards a unifying framework. In Evangelos Simoudis, Jiawei Han, and Usama M. Fayyad, editors, KDD,
pages 82–88. AAAI Press, 1996.

[21] Takashi Washio and Jun Luo, editors. Emerging Trends in Knowledge Discovery and Data Mining - PAKDD

http://wedowebsphere.de/news/process-mining-koryph%C3%A4e-wil-van-der-aalst-im-gespr%C3%A4ch-mit-wedowebsphere
http://wedowebsphere.de/news/process-mining-koryph%C3%A4e-wil-van-der-aalst-im-gespr%C3%A4ch-mit-wedowebsphere
http://www.motorola.com/motorolauniversity
www.oc.com

314 BIBLIOGRAPHY

2012 International Workshops: DMHM, GeoDoc, 3Clust, and DSDM, Kuala Lumpur, Malaysia, May 29 - June
1, 2012, Revised Selected Papers, volume 7769 of Lecture Notes in Computer Science. Springer, 2013.

[22] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data mining to knowledge
discovery in databases. AI Magazine, 17(3):37–54, 1996.

[23] Hans-Peter Kriegel, Karsten M. Borgwardt, Peer Kröger, Alexey Pryakhin, Matthias Schubert, and Arthur
Zimek. Future trends in data mining. Data Min. Knowl. Discov., 15(1):87–97, 2007.

[24] Saso Dzeroski. Multi-relational data mining: an introduction. SIGKDD Explorations, 5(1):1–16, 2003.
[25] Daniel A. Keim. Information visualization and visual data mining. IEEE Trans. Vis. Comput. Graph.,

8(1):1–8, 2002.
[26] Simeon J. Simo�, Michael H. Böhlen, and Arturas Mazeika, editors. Visual Data Mining - Theory,

Techniques and Tools for Visual Analytics, volume 4404 of Lecture Notes in Computer Science. Springer, 2008.
[27] Daniel A. Keim, Florian Mansmann, Jörn Schneidewind, Jim Thomas, and Hartmut Ziegler. Visual

analytics: Scope and challenges. In Simo� et al. [26], pages 76–90.
[28] S. Džeroski and N. Lavrač, editors. Relational Data Mining. Springer-Verlag, Berlin, 2001.
[29] Anne Rozinat and Wil M. P. van der Aalst. Decision mining in prom. In Dustdar et al. [244], pages 420–425.
[30] Linh Thao Ly, Stefanie Rinderle, Peter Dadam, and Manfred Reichert. Mining sta� assignment rules from

event-based data. In Bussler and Haller [245], pages 177–190.
[31] Ricardo Bezerra de Andrade e Silva, Jiji Zhang, and James G. Shanahan. Probabilistic work�ow mining. In

Robert Grossman, Roberto J. Bayardo, and Kristin P. Bennett, editors, KDD, pages 275–284. ACM, 2005.
[32] Martin Kuhlmann, Dalia Shohat, and Gerhard Schimpf. Role mining - revealing business roles for security

administration using data mining technology. In SACMAT, pages 179–186. ACM, 2003.
[33] Joyce Nakatumba, Michael Westergaard, and Wil M. P. van der Aalst. Generating event logs with

workload-dependent speeds from simulation models. In Marko Bajec and Johann Eder, editors, CAiSE
Workshops, volume 112 of Lecture Notes in Business Information Processing, pages 383–397. Springer, 2012.

[34] Anne Rozinat, Moe Thandar Wynn, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Colin J. Fidge.
Work�ow simulation for operational decision support. Data Knowl. Eng., 68(9):834–850, 2009.

[35] Anne Rozinat, R. S. Mans, Minseok Song, and Wil M. P. van der Aalst. Discovering simulation models. Inf.
Syst., 34(3):305–327, 2009.

[36] M. H. Jansen-vullers and M. Netjes. Business process simulation - a tool survey. In In Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN, 2006.

[37] J. Nakatumba, A. Rozinat, and N. Russell. Business process simulation: How to get it right. In International
Handbook on Business Process Management. Springer-Verlag, 2008.

[38] Tadao Murata. Petri Nets: Properties, Analysis and Applications. In Proceedings of the IEEE, volume 77-4,
pages 541–580, April 1989.

[39] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. New Jersey: Prentice-Hall, Inc., 1981.
[40] Wil M. P. van der Aalst. Veri�cation of work�ow nets. In Pierre Azéma and Gianfranco Balbo, editors,

ICATPN, volume 1248 of Lecture Notes in Computer Science, pages 407–426. Springer, 1997.
[41] Wil M. P. van der Aalst. The application of petri nets to work�ow management. Journal of Circuits,

Systems, and Computers, 8(1):21–66, 1998.
[42] W. M. P. van der Aalst, K. M. van Hee, and G. J. Houben. Modelling and analysing work�ow using a

Petri-net based approach. In G. De Michelis, C. Ellis, and G. Memmi, editors, Proceedings of the 2nd
Workshop on Computer-Supported Cooperative Work, Petri nets and related formalisms, pages 31–50, 1994.

[43] Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen. Causal nets: A modeling
language tailored towards process discovery. In Joost-Pieter Katoen and Barbara König, editors, CONCUR,
volume 6901 of Lecture Notes in Computer Science, pages 28–42. Springer, 2011.

[44] A.J.M.M. Weijters, W. van der Aalst, and A. Alves de Medeiros. Process mining with the heuristicsminer
algorithm. BETA working paper series 166, TU Eindhoven, 2006.

[45] Boudewijn F. van Dongen, Ana Karla A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters, and Wil M. P.
van der Aalst. The prom framework: A new era in process mining tool support. In Ciardo and Darondeau
[246], pages 444–454.

[46] Wil M. P. van der Aalst, Boudewijn F. van Dongen, Christian W. Günther, Anne Rozinat, Eric Verbeek, and
Ton Weijters. Prom: The process mining toolkit. In Ana Karla A. de Medeiros and Barbara Weber, editors,
BPM (Demos), volume 489 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

[47] Jochen De Weerdt, Manu De Backer, Jan Vanthienen, and Bart Baesens. A multi-dimensional quality
assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst.,
37(7):654–676, 2012.

BIBLIOGRAPHY 315

[48] Jonathan E. Cook and Alexander L. Wolf. Automating process discovery through event-data analysis. In
Dewayne E. Perry, Ross Je�rey, and David Notkin, editors, ICSE, pages 73–82. ACM, 1995.

[49] Jonathan E. Cook and Alexander L. Wolf. Discovering models of software processes from event-based data.
ACM Trans. Softw. Eng. Methodol., 7(3):215–249, 1998.

[50] Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining process models from work�ow logs.
In Hans-Jörg Schek, Fèlix Saltor, Isidro Ramos, and Gustavo Alonso, editors, EDBT, volume 1377 of Lecture
Notes in Computer Science, pages 469–483. Springer, 1998.

[51] Anindya Datta. Automating the discovery of as-is business process models: Probabilistic and algorithmic
approaches. Information Systems Research, 9(3):275–301, 1998.

[52] Heikki Mannila and Christopher Meek. Global partial orders from sequential data. In Raghu
Ramakrishnan, Salvatore J. Stolfo, Roberto J. Bayardo, and Ismail Parsa, editors, KDD, pages 161–168. ACM,
2000.

[53] Guido Schimm. Process miner - a tool for mining process schemes from event-based data. In Sergio Flesca,
Sergio Greco, Nicola Leone, and Giovambattista Ianni, editors, JELIA, volume 2424 of Lecture Notes in
Computer Science, pages 525–528. Springer, 2002.

[54] Guido Schimm. Mining exact models of concurrent work�ows. Computers in Industry, 53(3):265–281, 2004.
[55] Wil M. P. van der Aalst, Ton Weijters, and Laura Maruster. Work�ow mining: Discovering process models

from event logs. IEEE Trans. Knowl. Data Eng., 16(9):1128–1142, 2004.
[56] A.J.M.M Weijters and W.M.P. van der Aalst. Process mining. discovering work�ow models from

event-based data. In IEEE Congress on Evolutionary Computation, pages 283–290, 2001.
[57] A. J. M. M. Weijters and Wil M. P. van der Aalst. Rediscovering work�ow models from event-based data

using little thumb. Integrated Computer-Aided Engineering, 10(2):151–162, 2003.
[58] A. Alves de Medeiros, B. van Dongen, W. van der Aalst, and A.J.M.M. Weijters. Process mining: Extending

the alpha-algorithm to mine short loops. BETA working paper series 113, TU Eindhoven, 2004.
[59] Joachim Herbst and Dimitris Karagiannis. Work�ow mining with inwolve. Computers in Industry,

53(3):245–264, 2004.
[60] B. F. van Dongen and W. M. P. van der Aalst. Multi-phase process mining: Aggregating instance graphs

into EPCs and Petri nets. In Proceedings of the 2nd International Workshop on Applications of Petri Nets to
Coordination, Work�ow and Business Process Management (PNCWB), 2005.

[61] Walid Gaaloul, Karim Baïna, and Claude Godart. Towards mining structural work�ow patterns. In
Kim Viborg Andersen, John K. Debenham, and Roland Wagner, editors, DEXA, volume 3588 of Lecture
Notes in Computer Science, pages 24–33. Springer, 2005.

[62] Gianluigi Greco, Antonella Guzzo, Luigi Pontieri, and Domenico Saccà. Discovering expressive process
models by clustering log traces. IEEE Trans. Knowl. Data Eng., 18(8):1010–1027, 2006.

[63] Laura Maruster, A. J. M. M. Weijters, Wil M. P. van der Aalst, and Antal van den Bosch. A rule-based
approach for process discovery: Dealing with noise and imbalance in process logs. Data Min. Knowl.
Discov., 13(1):67–87, 2006.

[64] Hugo M. Ferreira and Diogo R. Ferreira. An integrated life cycle for work�ow management based on
learning and planning. Int. J. Cooperative Inf. Syst., 15(4):485–505, 2006.

[65] Ana Karla A. de Medeiros, A. J. M. M. Weijters, and Wil M. P. van der Aalst. Genetic process mining: an
experimental evaluation. Data Min. Knowl. Discov., 14(2):245–304, 2007.

[66] A. Alves de Medeiros. Genetic Process Mining. PhD thesis, TU Eindhoven, 2006.
[67] Christian W. Günther and Wil M. P. van der Aalst. Fuzzy mining - adaptive process simpli�cation based on

multi-perspective metrics. In Alonso et al. [247], pages 328–343.
[68] Lijie Wen, Wil M. P. van der Aalst, Jianmin Wang, and Jiaguang Sun. Mining process models with

non-free-choice constructs. Data Min. Knowl. Discov., 15(2):145–180, 2007.
[69] Evelina Lamma, Paola Mello, Marco Montali, Fabrizio Riguzzi, and Sergio Storari. Inducing declarative

logic-based models from labeled traces. In Alonso et al. [247], pages 344–359.
[70] Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. Mining taxonomies of process models. Data Knowl.

Eng., 67(1):74–102, 2008.
[71] A. Rozinat, M. Veloso, and W. M. P. van der Aalst. Using hidden markov models to evaluate the quality of

discovered process models. BPM Center Report BPM-08-10, BPMcenter.org, 2008.
[72] Gil Aires da Silva and Diogo R Ferreira. Applying hidden markov models to process mining. In Sistemas e

Tecnologias de Informação: Actas da 4ª Conferência Ibérica de Sistemas e Tecnologias de Informação,
AISTI/FEUP/UPF, 2009.

[73] Jonas Poelmans, Guido Dedene, Gerda Verheyden, Herman Van der Mussele, Stijn Viaene, and Edward
M. L. Peters. Combining business process and data discovery techniques for analyzing and improving
integrated care pathways. In Petra Perner, editor, ICDM, volume 6171 of Lecture Notes in Computer Science,

316 BIBLIOGRAPHY

pages 505–517. Springer, 2010.
[74] Lijie Wen, Jianmin Wang, Wil M. P. van der Aalst, Biqing Huang, and Jiaguang Sun. A novel approach for

process mining based on event types. J. Intell. Inf. Syst., 32(2):163–190, 2009.
[75] Francesco Folino, Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. Discovering expressive process

models from noised log data. In Bipin C. Desai, Domenico Saccà, and Sergio Greco, editors, IDEAS, ACM
International Conference Proceeding Series, pages 162–172. ACM, 2009.

[76] Diogo R. Ferreira and Daniel Gillblad. Discovering process models from unlabelled event logs. In Dayal
et al. [248], pages 143–158.

[77] Jan Martijn E. M. van der Werf, Boudewijn F. van Dongen, Cor A. J. Hurkens, and Alexander Serebrenik.
Process discovery using integer linear programming. Fundam. Inform., 94(3-4):387–412, 2009.

[78] W. M. P. van der Aalst, V. Rubin, B. F. van Dongen, E. Kindler, , and C. W. Günther. Process mining: A
two-step approach using transition systems and regions. BPM-06-30, BPM Center Report, 2006.

[79] Wil M. P. van der Aalst, Vladimir Rubin, H. M. W. Verbeek, Boudewijn F. van Dongen, Ekkart Kindler, and
Christian W. Günther. Process mining: a two-step approach to balance between under�tting and
over�tting. Software and System Modeling, 9(1):87–111, 2010.

[80] Josep Carmona, Jordi Cortadella, and Michael Kishinevsky. New region-based algorithms for deriving
bounded petri nets. IEEE Trans. Computers, 59(3):371–384, 2010.

[81] Josep Carmona and Jordi Cortadella. Process mining meets abstract interpretation. In José L. Balcázar,
Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors, ECML/PKDD (1), volume 6321 of Lecture
Notes in Computer Science, pages 184–199. Springer, 2010.

[82] F.M. Maggi, A.J. Mooij, and W.M.P. van der Aalst. User-Guided Discovery of Declarative Process Models.
In 2011 IEEE Symposium on Computational Intelligence and Data Mining. 2011.

[83] Fabrizio M. Maggi, R.P. Jagadeesh Chandra Bose, and Wil M.P. van der Aalst. E�cient discovery of
understandable declarative process models from event logs. In Jolita Ralyté, Xavier Franch, Sjaak
Brinkkemper, and Stanislaw Wrycza, editors, Advanced Information Systems Engineering, volume 7328 of
Lecture Notes in Computer Science, pages 270–285. Springer Berlin Heidelberg, 2012.

[84] Andrea Burattin and Alessandro Sperduti. Heuristics miner for time intervals. In ESANN, 2010.
[85] Andrea Burattin and Alessandro Sperduti. Automatic determination of parameters’ values for heuristics

miner++. In IEEE Congress on Evolutionary Computation, pages 1–8. IEEE, 2010.
[86] A. J. M. M. Weijters and J. T. S. Ribeiro. Flexible heuristics miner (fhm). In CIDM [249], pages 310–317.
[87] Andrea Burattin, Alessandro Sperduti, and Wil M. P. van der Aalst. Heuristics miners for streaming event

data. CoRR, abs/1212.6383, 2012.
[88] Wil M. P. van der Aalst, Joos C. A. M. Buijs, and Boudewijn F. van Dongen. Towards improving the

representational bias of process mining. In Karl Aberer, Ernesto Damiani, and Tharam S. Dillon, editors,
SIMPDA, volume 116 of Lecture Notes in Business Information Processing, pages 39–54. Springer, 2011.

[89] Marc Solé and Josep Carmona. An smt-based discovery algorithm for c-nets. In Haddad and Pomello [250],
pages 51–71.

[90] Fluxicon. Disco – discover your processes. http://fluxicon.com/disco, 2013.
[91] C. Di Ciccio and M. Mecella. A two-step fast algorithm for the automated discovery of declarative

work�ows. In Computational Intelligence and Data Mining (CIDM), 2013 IEEE Symposium on, pages
135–142, April 2013.

[92] M. Westergaard, C. Stahl, and H.A. Reijers. Unconstrainedminer: e�cient discovery of generalized
declarative process models. BPM Center Report BPM-13-28, BPMcenter.org, page 28, 2013.

[93] Seppe K. L. M. vanden Broucke, Jan Vanthienen, and Bart Baesens. Declarative process discovery with
evolutionary computing. In IEEE Congress on Evolutionary Computation, pages 1–8, 2014.

[94] Sander J.J. Leemans, Dirk Fahland, and WilM.P. van der Aalst. Discovering block-structured process
models from event logs - a constructive approach. In José-Manuel Colom and Jörg Desel, editors,
Application and Theory of Petri Nets and Concurrency, volume 7927 of Lecture Notes in Computer Science,
pages 311–329. Springer Berlin Heidelberg, 2013.

[95] Fabrizio Maria Maggi, Tijs Slaats, and HajoA. Reijers. The automated discovery of hybrid processes. In
Shazia Sadiq, Pnina So�er, and Hagen Völzer, editors, Business Process Management, volume 8659 of Lecture
Notes in Computer Science, pages 392–399. Springer International Publishing, 2014.

[96] Borja Vázquez-Barreiros, Manuel Mucientes, and Manuel Lama. A genetic algorithm for process discovery
guided by completeness, precision and simplicity. In Shazia Sadiq, Pnina So�er, and Hagen Völzer, editors,
Business Process Management, volume 8659 of Lecture Notes in Computer Science, pages 118–133. Springer
International Publishing, 2014.

[97] Ra�aele Conforti, Marlon Dumas, Luciano García-Bañuelos, and Marcello La Rosa. Beyond tasks and
gateways: Discovering bpmn models with subprocesses, boundary events and activity markers. In Shazia

http://fluxicon.com/disco

BIBLIOGRAPHY 317

Sadiq, Pnina So�er, and Hagen Völzer, editors, Business Process Management, volume 8659 of Lecture Notes
in Computer Science, pages 101–117. Springer International Publishing, 2014.

[98] Johannes De Smedt, Jochen De Weerdt, and Jan Vanthienen. Multi-paradigm process mining: Retrieving
better models by combining rules and sequences. In 22nd International Conference on Cooperative
Information Systems (CoopIS). Springer, 2014.

[99] A. Rozinat, M. Veloso, and W. van der Aalst. Evaluating the quality of discovered process models. In
Proceedings of IPM 2008 induction of process models (ECML PKDD 2008), pages 45–52, 2008.

[100] Anne Rozinat and Wil M. P. van der Aalst. Conformance checking of processes based on monitoring real
behavior. Inf. Syst., 33(1):64–95, 2008.

[101] Seppe vanden Broucke, Jochen De Weerdt, Jan Vanthienen, and Bart Baesens. Determining process model
precision and generalization with weighted arti�cial negative events. IEEE Transactions on Knowledge and
Data Engineering, 99(PrePrints):1, 2013.

[102] Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, Jan Mendling, and Mathias Weske. Process
compliance analysis based on behavioural pro�les. Inf. Syst., 36(7):1009–1025, 2011.

[103] Matthias Weidlich, Jan Mendling, and Mathias Weske. E�cient consistency measurement based on
behavioral pro�les of process models. IEEE Trans. Software Eng., 37(3):410–429, 2011.

[104] Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, and Jan Mendling. Process compliance measurement
based on behavioural pro�les. In Barbara Pernici, editor, CAiSE, volume 6051 of Lecture Notes in Computer
Science, pages 499–514. Springer, 2010.

[105] Jorge Munoz-Gama and Josep Carmona. A fresh look at precision in process conformance. In Hull et al.
[251], pages 211–226.

[106] Jorge Munoz-Gama and Josep Carmona. Enhancing precision in process conformance: Stability, con�dence
and severity. In CIDM [249], pages 184–191.

[107] Jochen De Weerdt, Manu De Backer, Jan Vanthienen, and Bart Baesens. A robust f-measure for evaluating
discovered process models. In CIDM [249], pages 148–155.

[108] Arya Adriansyah, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. Conformance checking using
cost-based �tness analysis. In EDOC, pages 55–64. IEEE Computer Society, 2011.

[109] Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen. Replaying history on process
models for conformance checking and performance analysis. Wiley Interdisc. Rew.: Data Mining and
Knowledge Discovery, 2(2):182–192, 2012.

[110] Arya Adriansyah, Natalia Sidorova, and Boudewijn F. van Dongen. Cost-based �tness in conformance
checking. In Benoît Caillaud, Josep Carmona, and Kunihiko Hiraishi, editors, ACSD, pages 57–66. IEEE,
2011.

[111] Arya Adriansyah, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. Towards robust conformance
checking. In zur Muehlen and Su [252], pages 122–133.

[112] Arya Adriansyah, Jorge Munoz-Gama, Josep Carmona, Boudewijn F. van Dongen, and Wil M. P. van der
Aalst. Alignment based precision checking. In Rosa and So�er [253], pages 137–149.

[113] Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. A genetic algorithm for
discovering process trees. In IEEE Congress on Evolutionary Computation, pages 1–8. IEEE, 2012.

[114] Jan Mendling, Gustaf Neumann, and Wil M. P. van der Aalst. Understanding the occurrence of errors in
process models based on metrics. In Meersman and Tari [254], pages 113–130.

[115] E. Mark Gold. Language identi�cation in the limit. Information and Control, 10(5):447–474, 1967.
[116] Dana Angluin. Inductive inference of formal languages from positive data. Information and Control,

45(2):117–135, 1980.
[117] Dana Angluin and Carl H. Smith. Inductive inference: Theory and methods. ACM Comput. Surv.,

15(3):237–269, 1983.
[118] Evelina Lamma, Paola Mello, Fabrizio Riguzzi, and Sergio Storari. Applying inductive logic programming

to process mining. In Hendrik Blockeel, Jan Ramon, Jude W. Shavlik, and Prasad Tadepalli, editors, ILP,
volume 4894 of Lecture Notes in Computer Science, pages 132–146. Springer, 2007.

[119] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni.
Veri�able agent interaction in abductive logic programming: The sci� framework. ACM Trans. Comput.
Log., 9(4), 2008.

[120] Federico Chesani, Evelina Lamma, Paola Mello, Marco Montali, Fabrizio Riguzzi, and Sergio Storari.
Exploiting inductive logic programming techniques for declarative process mining. T. Petri Nets and Other
Models of Concurrency, 2:278–295, 2009.

[121] Hendrik Blockeel and Luc De Raedt. Top-down induction of �rst-order logical decision trees. Artif. Intell.,
101(1-2):285–297, 1998.

[122] Stephen Muggleton. Inductive logic programming. In ALT, pages 42–62, 1990.

318 BIBLIOGRAPHY

[123] Ross D. King. Inductive logic programming: techniques and applications by nada lavrac and saso dzeroski,
ellis horwood, uk, 1993, pp 293, £39.95, isbn 0-13-457870-8. Knowledge Eng. Review, 9(3):311–312, 1994.

[124] Anne Rozinat, Ana Karla Alves de Medeiros, Christian W. Günther, A. J. M. M. Weijters, and Wil M. P.
van der Aalst. The need for a process mining evaluation framework in research and practice. In ter
Hofstede et al. [243], pages 84–89.

[125] H. Yang, B.F. van Dongen, A.H.M. ter Hofstede, M.T. Wynn, and J. Wang. Estimating Completeness of
Event Logs. BPM Center Report, 12-04-2012, 2012.

[126] H. Yang, A.H.M. ter Hofstede, B.F. van Dongen, M.T. Wynn, and J. Wang. On Global Completeness of Event
Logs. BPM Center Report, 10-09-2012, 2010.

[127] Esko Ukkonen. On-line construction of su�x trees. Algorithmica, 14(3):249–260, 1995.
[128] Wil M. P. van der Aalst, H. T. de Beer, and Boudewijn F. van Dongen. Process mining and veri�cation of

properties: An approach based on temporal logic. In Robert Meersman, Zahir Tari, Mohand-Said Hacid,
John Mylopoulos, Barbara Pernici, Özalp Babaoglu, Hans-Arno Jacobsen, Joseph P. Loyall, Michael Kifer,
and Stefano Spaccapietra, editors, OTM Conferences (1), volume 3760 of Lecture Notes in Computer Science,
pages 130–147. Springer, 2005.

[129] Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express search control knowledge for
planning. Artif. Intell., 116(1-2):123–191, 2000.

[130] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. J. ACM, 41(1):181–204, 1994.
[131] Jan Chomicki. E�cient checking of temporal integrity constraints using bounded history encoding. ACM

Trans. Database Syst., 20(2):149–186, 1995.
[132] William W. Cohen. Fast e�ective rule induction. In Armand Prieditis and Stuart J. Russell, editors, ICML,

pages 115–123. Morgan Kaufmann, 1995.
[133] Maja Pesic and Wil M. P. van der Aalst. A declarative approach for �exible business processes

management. In Johann Eder and Schahram Dustdar, editors, Business Process Management Workshops,
volume 4103 of Lecture Notes in Computer Science, pages 169–180. Springer, 2006.

[134] Maja Pesic, Helen Schonenberg, and Wil M. P. van der Aalst. Declare: Full support for loosely-structured
processes. In EDOC [255], pages 287–300.

[135] Maja Pesic, M. H. Schonenberg, Natalia Sidorova, and Wil M. P. van der Aalst. Constraint-based work�ow
models: Change made easy. In Meersman and Tari [254], pages 77–94.

[136] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative work�ows: Balancing between
�exibility and support. Computer Science - R&D, 23(2):99–113, 2009.

[137] Federico Chesani, Paola Mello, Marco Montali, and Sergio Storari. Towards a decser�ow declarative
semantics based on computational logic. Technical Report DEIS-LIA-07-001, University of Bologna (Italy),
January 2007. LIA Series no. 79.

[138] Edmund M. Clarke, Orna Grumberg, and A. Peled. Model Checking. MIT Press, 1999.
[139] M. Pesic and W. M. P. van der Aalst. Analyzing the resource perspective of work�ow management

systems: using a meta model and constraints. BETA working paper series 157, Eindhoven University of
Technology, 2006.

[140] Wil M. P. van der Aalst and A. J. M. M. Weijters. Process mining: a research agenda. Computers in Industry,
53(3):231–244, 2004.

[141] Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari, and Luc Schneider. Sweetening
ontologies with dolce. In Asunción Gómez-Pérez and V. Richard Benjamins, editors, EKAW, volume 2473 of
Lecture Notes in Computer Science, pages 166–181. Springer, 2002.

[142] Giancarlo Guizzardi and Gerd Wagner. Towards ontological foundations for agent modelling concepts
using the uni�ed fundational ontology (ufo). In Paolo Bresciani, Paolo Giorgini, Brian Henderson-Sellers,
Graham Low, and Michael Winiko�, editors, AOIS, volume 3508 of Lecture Notes in Computer Science, pages
110–124. Springer, 2004.

[143] Giancarlo Guizzardi and Gerd Wagner. A uni�ed foundational ontology and some applications of it in
business modeling. In Janis Grundspenkis and Marite Kirikova, editors, CAiSE Workshops (3), pages
129–143. Faculty of Computer Science and Information Technology, Riga Technical University, Riga,
Latvia, 2004.

[144] Giancarlo Guizzardi, Gerd Wagner, Nicola Guarino, and Marten van Sinderen. An ontologically
well-founded pro�le for uml conceptual models. In Anne Persson and Janis Stirna, editors, CAiSE, volume
3084 of Lecture Notes in Computer Science, pages 112–126. Springer, 2004.

[145] Guido L. Geerts and William E. McCarthy. An accounting object infrastructure for knowledge-based
enterprise models. IEEE Intelligent Systems, 14(4):89–94, 1999.

[146] August-Wilhelm Scheer, Oliver Thomas, and Otmar Adam. Process modeling using event-driven process
chains. In Process-Aware Information Systems. Wiley, 2005.

BIBLIOGRAPHY 319

[147] David C. Luckham. The power of events - an introduction to complex event processing in distributed enterprise
systems. ACM, 2005.

[148] Avigdor Gal and Ethan Hadar. Generic architecture of complex event processing systems. In Annika Hinze
and Alejandro P. Buchmann, editors, Principles and Applications of Distributed Event-Based Systems, pages
1–18. IGI Global, 2010.

[149] Gian Piero Zarri. Representation and processing of complex events. In AAAI Spring Symposium: Intelligent
Event Processing, pages 101–. AAAI, 2009.

[150] Di Wang, Elke A. Rundensteiner, and Richard T. Ellison. Active complex event processing over event
streams. PVLDB, 4(10):634–645, 2011.

[151] Di Wang, Elke A. Rundensteiner, Richard T. Ellison, and Han Wang. Active complex event processing
infrastructure: Monitoring and reacting to event streams. In Serge Abiteboul, Klemens Böhm, Christoph
Koch, and Kian-Lee Tan, editors, ICDE Workshops, pages 249–254. IEEE, 2011.

[152] M. Shepperd, Q. Song, Z. Sun, and C. Mair. Data quality: Some comments on the nasa software defect data
sets. IEEE Transactions on Software Engineering, Under review, 2012.

[153] Filip Caron, Seppe K. L. M. vanden Broucke, Jan Vanthienen, and Bart Baesens. On the distinction between
truthful, invisible, false and unobserved events an event existence classi�cation framework and the impact
on business process analytics related research areas. In AMCIS. Association for Information Systems, 2012.

[154] Jan Claes and Geert Poels. Process mining and the prom framework: An exploratory survey. In Rosa and
So�er [253], pages 187–198.

[155] Wil M. P. van der Aalst, Ana Karla A. de Medeiros, and A. J. M. M. Weijters. Genetic process mining. In
Ciardo and Darondeau [246], pages 48–69.

[156] Ana Karla A. de Medeiros, A. J. M. M. Weijters, and Wil M. P. van der Aalst. Genetic process mining: A
basic approach and its challenges. In Bussler and Haller [245], pages 203–215.

[157] Christian W. Günther. Process Mining in Flexible Environments. PhD thesis, TU Eindhoven, 2009.
[158] Jorge Munoz-Gama, Josep Carmona, and Wil M. P. van der Aalst. Conformance checking in the large:

Partitioning and topology. In Daniel et al. [256], pages 130–145.
[159] Andrea Burattin and Alessandro Sperduti. Plg: A framework for the generation of business process models

and their execution logs. In zur Muehlen and Su [252], pages 214–219.
[160] Wil M. P. van der Aalst, Boudewijn F. van Dongen, Joachim Herbst, Laura Maruster, Guido Schimm, and

A. J. M. M. Weijters. Work�ow mining: A survey of issues and approaches. Data Knowl. Eng.,
47(2):237–267, 2003.

[161] Object Management Group. Business Process Model and Notation (BPMN) Version 2.0. OMG Document –
formal/2011-01-03, 2011.

[162] Object Management Group. Business Process Model and Notation (BPMN) Version 1.2. OMG Document –
formal/2009-01-03, 2009.

[163] Remco M. Dijkman and Pieter Van Gorp. Bpmn 2.0 execution semantics formalized as graph rewrite rules.
In Jan Mendling, Matthias Weidlich, and Mathias Weske, editors, BPMN, volume 67 of Lecture Notes in
Business Information Processing, pages 16–30. Springer, 2010.

[164] Remco M. Dijkman, Marlon Dumas, and C. Ouyang. Formal semantics and automated analysis of BPmn
process models. Technical report, Queensland University of Technology, 2007.

[165] Peter Y. H. Wong and Jeremy Gibbons. A process semantics for bpmn. In Shaoying Liu, T. S. E. Maibaum,
and Keijiro Araki, editors, ICFEM, volume 5256 of Lecture Notes in Computer Science, pages 355–374.
Springer, 2008.

[166] Vitus SW Lam. A precise execution semantics for bpmn. IAENG International Journal of Computer Science,
39(1), 2012.

[167] Michael zur Muehlen and Jan Recker. How much language is enough? theoretical and practical use of the
business process modeling notation. In Janis A. Bubenko Jr., John Krogstie, Oscar Pastor, Barbara Pernici,
Colette Rolland, and Arne Sølvberg, editors, Seminal Contributions to Information Systems Engineering,
pages 429–443. Springer, 2013.

[168] Jan Recker. Opportunities and constraints: the current struggle with bpmn. Business Proc. Manag. Journal,
16(1):181–201, 2010.

[169] Jan C Recker. BPMN modeling–who, where, how and why. BPTrends, 5(3):1–8, 2008.
[170] Michele Chinosi and Alberto Trombetta. Bpmn: An introduction to the standard. Computer Standards &

Interfaces, 34(1):124–134, 2012.
[171] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. Fundamentals of Business Process

Management. Springer, 2013.
[172] Tomislav Rozman, Romana Vajde Horvat, and Ivan Rozman. Modeling the standard compliant software

processes in the university environment. Business Proc. Manag. Journal, 14(1):53–64, 2008.

320 BIBLIOGRAPHY

[173] Wil M. P. van der Aalst. On the representational bias in process mining. In Sumitra Reddy and Samir Tata,
editors, WETICE, pages 2–7. IEEE Computer Society, 2011.

[174] Wil M. P. van der Aalst, Arya Adriansyah, Ana Karla Alves de Medeiros, Franco Arcieri, Thomas Baier,
Tobias Blickle, R. P. Jagadeesh Chandra Bose, Peter van den Brand, Ronald Brandtjen, Joos C. A. M. Buijs,
Andrea Burattin, Josep Carmona, Malú Castellanos, Jan Claes, Jonathan Cook, Nicola Costantini, Francisco
Curbera, Ernesto Damiani, Massimiliano de Leoni, Pavlos Delias, Boudewijn F. van Dongen, Marlon
Dumas, Schahram Dustdar, Dirk Fahland, Diogo R. Ferreira, Walid Gaaloul, Frank van Ge�en, Sukriti Goel,
Christian W. Günther, Antonella Guzzo, Paul Harmon, Arthur H. M. ter Hofstede, John Hoogland,
Jon Espen Ingvaldsen, Koki Kato, Rudolf Kuhn, Akhil Kumar, Marcello La Rosa, Fabrizio Maria Maggi,
Donato Malerba, R. S. Mans, Alberto Manuel, Martin McCreesh, Paola Mello, Jan Mendling, Marco Montali,
Hamid R. Motahari Nezhad, Michael zur Muehlen, Jorge Munoz-Gama, Luigi Pontieri, Joel Ribeiro, Anne
Rozinat, Hugo Seguel Pérez, Ricardo Seguel Pérez, Marcos Sepúlveda, Jim Sinur, Pnina So�er, Minseok
Song, Alessandro Sperduti, Giovanni Stilo, Casper Stoel, Keith D. Swenson, Maurizio Talamo, Wei Tan,
Chris Turner, Jan Vanthienen, George Varvaressos, Eric Verbeek, Marc Verdonk, Roberto Vigo, Jianmin
Wang, Barbara Weber, Matthias Weidlich, Ton Weijters, Lijie Wen, Michael Westergaard, and Moe Thandar
Wynn. Process mining manifesto. In Florian Daniel, Kamel Barkaoui, and Schahram Dustdar, editors,
Business Process Management Workshops (1), volume 99 of Lecture Notes in Business Information Processing,
pages 169–194. Springer, 2011.

[175] Wil M. P. van der Aalst, Hajo A. Reijers, and Minseok Song. Discovering social networks from event logs.
Computer Supported Cooperative Work, 14(6):549–593, 2005.

[176] Jian Pei, Jian Liu, Haixun Wang, Ke Wang, Philip S. Yu, and Jianyong Wang. E�ciently mining frequent
closed partial orders. In ICDM, pages 753–756. IEEE Computer Society, 2005.

[177] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent episodes in event
sequences. Data Min. Knowl. Discov., 1(3):259–289, 1997.

[178] Jian Pei, Haixun Wang, Jian Liu, Ke Wang, Jianyong Wang, and Philip S. Yu. Discovering frequent closed
partial orders from strings. IEEE Trans. Knowl. Data Eng., 18(11):1467–1481, 2006.

[179] Kuo-Yu Huang and Chia-Hui Chang. E�cient mining of frequent episodes from complex sequences. Inf.
Syst., 33(1):96–114, 2008.

[180] Wil M. P. van der Aalst. Decomposing petri nets for process mining: A generic approach. Distributed and
Parallel Databases, 31(4):471–507, 2013.

[181] Wil M. P. van der Aalst. Decomposing process mining problems using passages. In Haddad and Pomello
[250], pages 72–91.

[182] Jorge Munoz-Gama, Josep Carmona, and Wil M. P. van der Aalst. Hierarchical conformance checking of
process models based on event logs. In José Manuel Colom and Jörg Desel, editors, Petri Nets, volume 7927
of Lecture Notes in Computer Science, pages 291–310. Springer, 2013.

[183] Bokyoung Kang, Seung Kyung Lee, Yeong bin Min, Suk-Ho Kang, and Nam Wook Cho. Real-time process
quality control for business activity monitoring. In Marina L. Gavrilova, Osvaldo Gervasi, David Taniar,
Youngsong Mun, and Andrés Iglesias, editors, ICCSA Workshops, pages 237–242. IEEE Computer Society,
2009.

[184] Christian Janiesch, Martin Matzner, and Oliver Müller. Beyond process monitoring: a proof-of-concept of
event-driven business activity management. Business Proc. Manag. Journal, 18(4):625–643, 2012.

[185] Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Völzer. Simpli�ed computation and generalization of the
re�ned process structure tree. In Mario Bravetti and Tev�k Bultan, editors, WS-FM, volume 6551 of Lecture
Notes in Computer Science, pages 25–41. Springer, 2010.

[186] Minseok Song, Christian W. Günther, and Wil M. P. van der Aalst. Trace clustering in process mining. In
Danilo Ardagna, Massimo Mecella, and Jian Yang, editors, Business Process Management Workshops,
volume 17 of Lecture Notes in Business Information Processing, pages 109–120. Springer, 2008.

[187] Diogo R. Ferreira, Marielba Zacarias, Miguel Malheiros, and Pedro Ferreira. Approaching process mining
with sequence clustering: Experiments and �ndings. In Alonso et al. [247], pages 360–374.

[188] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Context aware trace clustering: Towards
improving process mining results. In SDM, pages 401–412. SIAM, 2009.

[189] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Trace clustering based on conserved patterns:
Towards achieving better process models. In Rinderle-Ma et al. [257], pages 170–181.

[190] Francesco Folino, Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. Mining usage scenarios in business
processes: Outlier-aware discovery and run-time prediction. Data Knowl. Eng., 70(12):1005–1029, 2011.

[191] Jochen De Weerdt, Seppe K. L. M. vanden Broucke, Jan Vanthienen, and Bart Baesens. Active trace
clustering for improved process discovery. IEEE Trans. Knowl. Data Eng., 25(12):2708–2720, 2013.

[192] M. Song, H. Yang, Seyed Hossein Siadat, and M. Pechenizkiy. A comparative study of dimensionality
reduction techniques to enhance trace clustering performances. Expert Syst. Appl., 40(9):3722–3737, 2013.

[193] Chathura C. Ekanayake, Marlon Dumas, Luciano García-Bañuelos, and Marcello La Rosa. Slice, mine and

BIBLIOGRAPHY 321

dice: Complexity-aware automated discovery of business process models. In Daniel et al. [256], pages
49–64.

[194] D. Martens and F. Provost. Explaining documents’ classi�cations. Working paper CEDER-11-01, New York
University - Stern School of Business, 2011.

[195] David Martens and Foster Provost. Explaining data-driven document classi�cations. MISQ, 38(1):73–99,
2014.

[196] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Abstractions in process mining: A taxonomy of
patterns. In Dayal et al. [248], pages 159–175.

[197] Vladimir I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707–710, 1966.

[198] Igor V. Cadez, David Heckerman, Christopher Meek, Padhraic Smyth, and Steven White. Model-based
clustering and visualization of navigation patterns on a web site. Data Min. Knowl. Discov., 7(4):399–424,
2003.

[199] Gabriel M. Veiga and Diogo R. Ferreira. Understanding spaghetti models with sequence clustering for
prom. In Rinderle-Ma et al. [257], pages 92–103.

[200] Richard E. Bellman. Adaptive control processes - A guided tour. Princeton University Press, 1961.
[201] Charu Aggarwal, Alexander Hinneburg, and Daniel Keim. On the surprising behavior of distance metrics

in high dimensional space. Database Theory—ICDT 2001, pages 420–434, 2001.
[202] Rob J. van Glabbeek and Ursula Goltz. Re�nement of actions and equivalence notions for concurrent

systems. Acta Inf., 37(4/5):229–327, 2001.
[203] Jan Hidders, Marlon Dumas, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Jan Verelst. When are

two work�ows the same? In Mike D. Atkinson and Frank K. H. A. Dehne, editors, CATS, volume 41 of
CRPIT, pages 3–11. Australian Computer Society, 2005.

[204] Bartek Kiepuszewski, Arthur H. M. ter Hofstede, and Wil M. P. van der Aalst. Fundamentals of control �ow
in work�ows. Acta Inf., 39(3):143–209, 2003.

[205] Wil M. P. van der Aalst, Ana Karla A. de Medeiros, and A. J. M. M. Weijters. Process equivalence:
Comparing two process models based on observed behavior. In Dustdar et al. [244], pages 129–144.

[206] Ana Karla Alves de Medeiros, Wil M. P. van der Aalst, and A. J. M. M. Weijters. Quantifying process
equivalence based on observed behavior. Data Knowl. Eng., 64(1):55–74, 2008.

[207] Remco M. Dijkman, Marlon Dumas, Boudewijn F. van Dongen, Reina Käärik, and Jan Mendling. Similarity
of business process models: Metrics and evaluation. Inf. Syst., 36(2):498–516, 2011.

[208] Remco M. Dijkman. Diagnosing di�erences between business process models. In Marlon Dumas, Manfred
Reichert, and Ming-Chien Shan, editors, BPM, volume 5240 of Lecture Notes in Computer Science, pages
261–277. Springer, 2008.

[209] Remco M. Dijkman. A classi�cation of di�erences between similar businessprocesses. In EDOC [255],
pages 37–50.

[210] Boudewijn F. van Dongen, Remco M. Dijkman, and Jan Mendling. Measuring similarity between business
process models. In Zohra Bellahsene and Michel Léonard, editors, CAiSE, volume 5074 of Lecture Notes in
Computer Science, pages 450–464. Springer, 2008.

[211] Haiping Zha, Jianmin Wang, Lijie Wen, Chaokun Wang, and Jiaguang Sun. A work�ow net similarity
measure based on transition adjacency relations. Computers in Industry, 61(5):463–471, 2010.

[212] J.R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1993.

[213] Yi Liu, Taghi M. Khoshgoftaar, and Naeem Seliya. Evolutionary optimization of software quality modeling
with multiple repositories. IEEE Trans. Software Eng., 36(6):852–864, 2010.

[214] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Trace alignment in process mining:
Opportunities for process diagnostics. In Hull et al. [251], pages 227–242.

[215] Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Min. Knowl.
Discov., 2(2):121–167, 1998.

[216] J. Ross Quinlan. Simplifying decision trees. International Journal of Man-Machine Studies, 27(3):221–234,
1987.

[217] Anne Rozinat and Wil M. P. van der Aalst. Conformance testing: Measuring the �t and appropriateness of
event logs and process models. In Bussler and Haller [245], pages 163–176.

[218] Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. On the Role of Fitness,
Precision, Generalization and Simplicity in Process Discovery (to appear). In 20th International Conference
on Cooperative Information Systems (CoopIS 2012), lncs, 2012.

[219] Massimiliano de Leoni, Fabrizio Maria Maggi, and Wil M. P. van der Aalst. Aligning event logs and
declarative process models for conformance checking. In Alistair P. Barros, Avigdor Gal, and Ekkart

322 BIBLIOGRAPHY

Kindler, editors, BPM, volume 7481 of Lecture Notes in Computer Science, pages 82–97. Springer, 2012.
[220] Jianmin Wang, Raymond K. Wong, Jianwei Ding, Qinlong Guo, and Lijie Wen. E�cient selection of process

mining algorithms. IEEE T. Services Computing, 6(4):484–496, 2013.
[221] Jianmin Wang, Raymond K. Wong, Jianwei Ding, Qinlong Guo, and Lijie Wen. On recommendation of

process mining algorithms. In Carole A. Goble, Peter P. Chen, and Jia Zhang, editors, ICWS, pages 311–318.
IEEE, 2012.

[222] P. Weber, B. Bordbar, P. Tino, and B. Majeed. A framework for comparing process mining algorithms. In
GCC Conference and Exhibition (GCC), 2011 IEEE, pages 625–628, 2011.

[223] Joel Ribeiro, Josep Carmona, Mustafa Mısır, and Michele Sebag. A recommender system for process
discovery. In Shazia Sadiq, Pnina So�er, and Hagen Völzer, editors, Business Process Management, volume
8659 of Lecture Notes in Computer Science, pages 67–83. Springer International Publishing, 2014.

[224] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri nets and cpn tools for modelling and
validation of concurrent systems. STTT, 9(3-4):213–254, 2007.

[225] Kurt Jensen. An introduction to the theoretical aspects of coloured petri nets. In J. W. de Bakker, Willem P.
de Roever, and Grzegorz Rozenberg, editors, REX School/Symposium, volume 803 of Lecture Notes in
Computer Science, pages 230–272. Springer, 1993.

[226] A. K. Alves De Medeiros and C. W. Gunther. Process mining: Using cpn tools to create test logs for mining
algorithms. In Proceedings of the Sixth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools, pages 177–190, 2005.

[227] Michael Westergaard and Boudewijn van Dongen. Keyvaluesets: Event logs revisited, 2013.
[228] Petri Nets World. Complete overview of petri nets tools database.
[229] Nicholas J. Dingle, William J. Knottenbelt, and Tamas Suto. Pipe2: A tool for the performance evaluation of

generalised stochastic petri nets. SIGMETRICS Perform. Eval. Rev., 36(4):34–39, March 2009.
[230] Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jörn Schumacher, Michael Köhler, Daniel Moldt,

Heiko Rölke, and Rüdiger Valk. An extensible editor and simulation engine for petri nets: Renew. In Jordi
Cortadella and Wolfgang Reisig, editors, ICATPN, volume 3099 of Lecture Notes in Computer Science, pages
484–493. Springer, 2004.

[231] Andreas Eckleder and Thomas Freytag. Woped 2.0 goes bpel 2.0. In Niels Lohmann and Karsten Wolf,
editors, AWPN, volume 380 of CEUR Workshop Proceedings, pages 75–80. CEUR-WS.org, 2008.

[232] T. Freytag. WoPeD–Work�ow Petri Net Designer. University of Cooperative Education, 2005.
[233] Kees M. van Hee, Olivia Oanea, Reinier Post, Lou J. Somers, and Jan Martijn E. M. van der Werf. Yasper: a

tool for work�ow modeling and analysis. In ACSD, pages 279–282. IEEE Computer Society, 2006.
[234] A. Rozinat, A.K. Alves de Medeiros, C.W. Gunther, A.J.M.M. Weijters, and W.M.P. van der Aalst. The need

for a process mining evaluation framework in research and practice: position paper. In Proceedings of the
2007 international conference on Business process management (BPM 2007), pages 84–89, 2007.

[235] Seppe K. L. M. vanden Broucke, Jochen De Weerdt, Bart Baesens, and Jan Vanthienen. Improved arti�cial
negative event generation to enhance process event logs. In Jolita Ralyté, Xavier Franch, Sjaak
Brinkkemper, and Stanislaw Wrycza, editors, CAiSE, volume 7328 of Lecture Notes in Computer Science,
pages 254–269. Springer, 2012.

[236] Laura Sánchez-González, Félix García, Jan Mendling, Francisco Ruiz, and Mario Piattini. Prediction of
business process model quality based on structural metrics. In Je�rey Parsons, Motoshi Saeki, Peretz
Shoval, Carson C. Woo, and Yair Wand, editors, ER, volume 6412 of Lecture Notes in Computer Science,
pages 458–463. Springer, 2010.

[237] Janez Demsar. Statistical comparisons of classi�ers over multiple data sets. Journal of Machine Learning
Research, 7:1–30, 2006.

[238] John W. Mauchly. Signi�cance test for sphericity of a normal n-variate distribution. The Annals of
Mathematical Statistics, 11(2):pp. 204–209, 1940.

[239] Samuel W Greenhouse and Seymour Geisser. On methods in the analysis of pro�le data. Psychometrika,
24(2):95–112, 1959.

[240] Huynh Huynh and Leonard S. Feldt. Estimation of the box correction for degrees of freedom from sample
data in randomized block and split-plot designs. Journal of Educational Statistics, 1(1):pp. 69–82, 1976.

[241] Damián Pérez-Alfonso, Raykenler Yzquierdo-Herrera, and Manuel Lazo-Cortés. Recommendation of
process discovery algorithms: a classi�cation problem. In Proceeding of: 5th Mexican Conference on Pattern
Recognition (MCPR 2013), Research in Computing Science, volume 61, 2013.

[242] Joel Ribeiro, Josep Carmona, Mustafa Misir, and Michele Sebag. A recommender system for process
discovery. In Business Process Management - 12th International Conference, BPM 2014, 2014.

[243] Arthur H. M. ter Hofstede, Boualem Benatallah, and Hye-Young Paik, editors. Business Process Management
Workshops, BPM 2007 International Workshops, BPI, BPD, CBP, ProHealth, RefMod, semantics4ws, Brisbane,

BIBLIOGRAPHY 323

Australia, September 24, 2007, Revised Selected Papers, volume 4928 of Lecture Notes in Computer Science.
Springer, 2008.

[244] Schahram Dustdar, José Luiz Fiadeiro, and Amit P. Sheth, editors. Business Process Management, 4th
International Conference, BPM 2006, Vienna, Austria, September 5-7, 2006, Proceedings, volume 4102 of
Lecture Notes in Computer Science. Springer, 2006.

[245] Christoph Bussler and Armin Haller, editors. Business Process Management Workshops, BPM 2005
International Workshops, BPI, BPD, ENEI, BPRM, WSCOBPM, BPS, Nancy, France, September 5, 2005, Revised
Selected Papers, volume 3812, 2006.

[246] Gianfranco Ciardo and Philippe Darondeau, editors. Applications and Theory of Petri Nets 2005, 26th
International Conference, ICATPN 2005, Miami, USA, June 20-25, 2005, Proceedings, volume 3536 of Lecture
Notes in Computer Science. Springer, 2005.

[247] Gustavo Alonso, Peter Dadam, and Michael Rosemann, editors. Business Process Management, 5th
International Conference, BPM 2007, Brisbane, Australia, September 24-28, 2007, Proceedings, volume 4714 of
Lecture Notes in Computer Science. Springer, 2007.

[248] Umeshwar Dayal, Johann Eder, Jana Koehler, and Hajo A. Reijers, editors. Business Process Management,
7th International Conference, BPM 2009, Ulm, Germany, September 8-10, 2009. Proceedings, volume 5701 of
Lecture Notes in Computer Science. Springer, 2009.

[249] Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2011, part of the
IEEE Symposium Series on Computational Intelligence 2011, April 11-15, 2011, Paris, France. IEEE, 2011.

[250] Serge Haddad and Lucia Pomello, editors. Application and Theory of Petri Nets - 33rd International
Conference, PETRI NETS 2012, Hamburg, Germany, June 25-29, 2012. Proceedings, volume 7347 of Lecture
Notes in Computer Science. Springer, 2012.

[251] Richard Hull, Jan Mendling, and Stefan Tai, editors. Business Process Management - 8th International
Conference, BPM 2010, Hoboken, NJ, USA, September 13-16, 2010. Proceedings, volume 6336 of Lecture Notes
in Computer Science. Springer, 2010.

[252] Michael zur Muehlen and Jianwen Su, editors. Business Process Management Workshops - BPM 2010
International Workshops and Education Track, Hoboken, NJ, USA, September 13-15, 2010, Revised Selected
Papers, volume 66 of Lecture Notes in Business Information Processing. Springer, 2011.

[253] Marcello La Rosa and Pnina So�er, editors. Business Process Management Workshops - BPM 2012
International Workshops, Tallinn, Estonia, September 3, 2012. Revised Papers, volume 132 of Lecture Notes in
Business Information Processing. Springer, 2013.

[254] Robert Meersman and Zahir Tari, editors. On the Move to Meaningful Internet Systems 2007: CoopIS, DOA,
ODBASE, GADA, and IS, OTM Confederated International Conferences CoopIS, DOA, ODBASE, GADA, and IS
2007, Vilamoura, Portugal, November 25-30, 2007, Proceedings, Part I, volume 4803 of Lecture Notes in
Computer Science. Springer, 2007.

[255] 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), 15-19 October 2007,
Annapolis, Maryland, USA. IEEE Computer Society, 2007.

[256] Florian Daniel, Jianmin Wang, and Barbara Weber, editors. Business Process Management - 11th
International Conference, BPM 2013, Beijing, China, August 26-30, 2013. Proceedings, volume 8094 of Lecture
Notes in Computer Science. Springer, 2013.

[257] Stefanie Rinderle-Ma, Shazia Wasim Sadiq, and Frank Leymann, editors. Business Process Management
Workshops, BPM 2009 International Workshops, Ulm, Germany, September 7, 2009. Revised Papers, volume 43
of Lecture Notes in Business Information Processing. Springer, 2010.

324 BIBLIOGRAPHY

325

Publication List

A recent and up-to-date list is available at:

http://www.seppe.net

Articles in Internationally Reviewed Academic Journals

Caron, F., vanden Broucke, S., Vanthienen, J., Baesens, B. (2014). Advanced
rule-based process analytics: applications for risk response decisions and
management control activities. Expert Systems with Applications, ac-
cepted.

Seret, A., vanden Broucke, S., Baesens, B., Vanthienen, J. (2014). A dy-
namic understanding of customer behavior processes based on clustering
and sequence mining. Expert Systems with Applications, accepted.

vanden Broucke, S., De Weerdt, J., Vanthienen, J., Baesens, B. (2013). Deter-
mining process model precision and generalization with weighted arti�cial
negative events. IEEE Transactions on Knowledge and Data Engineering,
accepted.

De Weerdt, J., vanden Broucke, S., Vanthienen, J., Baesens, B. (2013). Ac-
tive trace clustering for improved process discovery. IEEE Transactions on
Knowledge and Data Engineering, 25 (12), 2708-2720.

Van den Bulcke, T., Vanden Broucke, P., Van Hoof, V., Wouters, K., vanden
Broucke, S., Smits, G., Smits, E., Proesmans, S., Van Genechten, T., Eyskens,
F. (2011). Data mining methods for classi�cation of Medium-Chain Acyl-
CoA dehydrogenase de�ciency (MCADD) using non-derivatized tandem
MS neonatal screening data. Journal of Biomedical Informatics, 44 (2), 319-
325.

326 PUBLICATION LIST

Articles in International Scienti�c Conferences and Sym-
posia

vanden Broucke, S., Muñoz-Gama, J., Carmona, J., Baesens, B., Vanthienen,
J. (2014). Event-based real-time decomposed conformance analysis, 18 pp.
OnTheMove Federated Conferences & Workshops, CoopIS 2014 (CoopIS’14),
Amantea, Calabria (Italy), 27-31 October 2014.

Zhu, X., Zhu, G., vanden Broucke, S., Vanthienen, J., Baesens, B. (2014).
Supporting Sustainable Business Processes through a Geospatial Context
Extension. 2nd International Conference on Geo-Informatics in Resource
Management & Sustainable Ecosystem (GRMSE’14). Michigan (USA), 3-5
October 2014.

Xinwei Zhu, Guobin Zhu, vanden Broucke, S., Vanthienen, J., Baesens,
B. (2014). Towards Location-Aware Process Modeling and Execution.
Workshop on Data- & Artifact- centric BPM (DAB’14). Haifa (Israel), 7-11
September 2014, accepted.

De Weerdt, J., vanden Broucke, S., Caron, F. (2014). Bidimensional Pro-
cess Discovery for Mining BPMN Models. Workshop on Decision Min-
ing & Modeling for Business Processes (DeMiMoP’14). Haifa (Israel), 7-11
September 2014, accepted.

De Weerdt, J., vanden Broucke, S., Vanthienen, J., Baesens, B. (2014). Ex-
plaining Clustered Process Instances, Business Process Management Con-
ference 2014, Haifa (Israel), 7-11 September 2014, accepted.

vanden Broucke, S., Vanthienen, J., Baesens, B. (2014). Declarative Process
Discovery with Evolutionary Computing. 2014 IEEE Congress on Evo-
lutionary Computation Proceedings: Vol. accepted. 2014 IEEE. Beijing
(China), 6-11 July 2014.

Low, W.Z., De Weerdt, J., ter Hostede, A.H.M., van der Aalst, W.M.P., van-
den Broucke, S. (2014). Cost Optimisation of Business Process Execution.
2014 IEEE Congress on Evolutionary Computation Proceedings: Vol. ac-
cepted. 2014 IEEE. Beijing (China), 6-11 July 2014.

vanden Broucke, S., Vanthienen, J., Baesens, B. (2013). Volvo IT Belgium
VINST. Proceedings of the 3rd Business Process Intelligence Challenge co-
located with 9th International Business Process Intelligence workshop (BPI
2013): Vol. 1052. Business Process Intelligence Challenge 2013 (BPIC 2013).

PUBLICATION LIST 327

Beijing (China), 26 August 2013 (art.nr. 3). Aachen (Germany): RWTH
Aachen University.

vanden Broucke, S., Caron, F., Vanthienen, J., Baesens, B. (2013). Validat-
ing and enhancing declarative business process models based on allowed
and non-occurring past behavior. Business Process Management Work-
shops. Workshop on Decision Mining & Modeling for Business Processes
(DeMiMoP’13). Beijing (China), 26-30 August 2013.

vanden Broucke, S., Delvaux, C., Freitas, J., Rogova, T., Vanthienen, J., Bae-
sens, B. (2013). Uncovering the relationship between event log character-
istics and process discovery techniques. Business Process Management
Workshops. Workshop on Business Process Intelligence (BPI2013). Bei-
jing (China), 26-30 August 2013.

Seret, A., vanden Broucke, S., Baesens, B., Vanthienen, J. (2013). An ex-
ploratory approach for understanding customer behavior processes bases
on clustering and sequence mining. Business Process Management Work-
shops. Workshop on Decision Mining & Modeling for Business Processes
(DeMiMoP’13). Beijing (China), 26-30 August 2013.

vanden Broucke, S., De Weerdt, J., Vanthienen, J., Baesens, B. (2013).
A comprehensive benchmarking framework (CoBeFra) for conformance
analysis between procedural process models and event logs in ProM. Pro-
ceedings of the IEEE Symposium on Computational Intelligence and Data
Mining, CIDM 2013, part of the IEEE Symposium Series on Computational
Intelligence 2013, SSCI 2013: vol. accepted. IEEE Symposium on Compu-
tational Intelligence and Data Mining (CIDM 2013). Singapore, 16-19 April
2013.

Caron, F., vanden Broucke, S., Vanthienen, J., Baesens, B. (2012). On the
distinction between truthful, invisible, false and unobserved events. Pro-
ceedings of the 18th Americas Conference on Information Systems: Vol.
e-pub. Americas Conference on Information Systems. Seattle, Washington
(US), 9-12 August 2012 (art.nr. 24) Association for Information Systems.

De Weerdt, J., vanden Broucke, S., Vanthienen, J., Baesens, B. (2012). Lever-
aging process discovery with trace clustering and text mining for intelli-
gent analysis of incident management processes. Evolutionary Computa-
tion (CEC), 2012 IEEE Congress on. Congress on Evolutionary Computa-
tion (CEC), 2012 IEEE. Brisbane (Australia), 10-15 June 2012 (pp. 1-8) IEEE
computational intelligence society.

328 PUBLICATION LIST

CAiSE’12 vanden Broucke, S., De Weerdt, J., Baesens, B., Vanthienen, J.
(2012). An improved arti�cial negative event generator to enhance process
event logs. In Ralyt, J. (Ed.), Franch, X. (Ed.), Brinkkemper, S. (Ed.), Wrycza,
S. (Ed.), Lecture Notes in Computer Science. International Conference on
Advanced Information Systems Engineering (CAiSE’12). Gdansk (Poland),
25-29 June 2012 (pp. 254-269) Springer.

ICIS JAIS 2012 Caron, F., vanden Broucke, S., Vanthienen, J., Baesens, B.
(2012). On the distinction between truthful, invisible, false and unobserved
events. Sprouts: Working Papers on Information Systems: vol. 12 (16).
11th JAIS Theory Development Workshop at ICIS 2012. Orlando, Florida,
16 December 2012.

Articles in Professionally Oriented Journals, Technical
Reports, Book(s) (Chapters)

Baesens, B., Backiel, A., vanden Broucke, S. (2015). Beginning Java: Object
Oriented Programming for Business Applications. Wiley, forthcoming.

vanden Broucke, S., Vanthienen, J., Baesens, B. (2014). Straightforward
Petri net-based event log generation in ProM. FEB Research Report KBI_1417,
12 pp. Leuven (Belgium): KU Leuven - Faculty of Economics and Business.

Baesens, B. (2014). Chapter: Business Process Analytics by vanden Broucke
S. in Analytics in A Big Data World: The Essential Guide to Data Science
and its Applications. Wiley, June 2014.

vanden Broucke, S., Baesens, B., Lismont, J., Vanthienen, J. (2014). Sluit de
lus: moderne technieken in Business Process Analytics. Informatie.

Baesens, B., vanden Broucke, S., Dejaeger, K., Eerola, T., Goedhuys, L., Riis,
M., Wehkamp, R. (2013). Cloudcomputing in analytics: de hype ontraad-
seld.

vanden Broucke, S., Baesens, B., Vanthienen, J. (2013). Closing the loop:
state of the art in business process analytics. Data Insight & Social BI:
Executive Update, Cutter Consortium.

vanden Broucke, S. (2013). What’s in a name: Bitcoin, de digitale munteen-
heid. ECONnect (Q2), 40-41.

PUBLICATION LIST 329

Dejaeger, K., vanden Broucke, S., Eerola, T., Wehkamp, R., Goedhuys, L.,
Riis, M., Baesens, B. (2012). Beyond the hype: cloud computing in analytics.
Finland: Techila Technologies.

Dejaeger, K., vanden Broucke, S., Eerola, T., Wehkamp, R., Goedhuys, L.,
Riis, M., Baesens, B. (2012). Beyond the hype: cloud computing in analytics.
Data Insight & Social BI: Executive Update, Cutter Consortium.

vanden Broucke, S., Muñoz-Gama, J., Carmona, J., Baesens, B., Vanthienen,
J. (2013). Event-based real-time decomposed conformance analysis, 21
pp: Polytechnic University of Catalonia, Department of Information Lan-
guages and Systems.

vanden Broucke, S., De Weerdt, J., Vanthienen, J., Baesens, B. (2013). On re-
playing process execution traces containing positive and negative events.
FEB Research Report KBI_1311, 17 pp. Leuven (Belgium): KU Leuven -
Faculty of Economics and Business.

De Weerdt, J., vanden Broucke, S., Vanthienen, J., Baesens, B. (2012). Lever-
aging process discovery with trace clustering and text mining for intel-
ligent analysis of incident management processes. FEB Research Report
KBI_1215, 9 pp. Leuven (Belgium): KU Leuven - Faculty of Economics and
Business.

vanden Broucke, S., De Weerdt, J., Vanthienen, J., Baesens, B. (2012). An
improved process event log arti�cial negative event generator. FEB Re-
search Report KBI_1216, 17 pp. Leuven (Belgium): KU Leuven - Faculty of
Economics and Business.

Articles in Submission and in Preparation

De Weerdt, J., vanden Broucke, S., Vanthienen, J., Baesens, B. (2014). Ex-
plaining Clustered Process Instances with Support Vector Machines, in
preparation for submission.

vanden Broucke, S., De Weerdt, J., Vanthienen J., Baesens, B. (2014). Fod-
ina: a Robust and Flexible Heuristic Process Discovery Technique, in prepa-
ration for submission.

vanden Broucke, S., Muñoz-Gama, J., Carmona, J., Baesens, B., Vanthienen,
J. (2014). Event-based real-time decomposed conformance analysis, in
preparation for submission.

330 PUBLICATION LIST

Xinwei Zhu, Guobin Zhu, vanden Broucke, S., Vanthienen, J., Baesens, B.
(2014). Towards Location-Aware Process Modeling and Execution, in sub-
mission (Decision Support Systems).

vanden Broucke, S., Caron, F., Lismont, J., Vanthienen, J., Baesens, B.
(2014). On the Gap between Reality and Registration: A Business Event
Analysis Classi�cation Framework, in submission (Journal of Information
Technology & Management).

331

Doctoral Dissertations from the Faculty of
Business and Economics

Doctoral dissertations from the Faculty of Business and Economics, see:

http://www.kuleuven.be/doctoraatsverdediging/archief.htm

332 DOCTORAL DISSERTATIONS

	Front Matter
	Committee
	Acknowledgments
	Table of Contents
	English Summary
	Dutch Summary
	German Summary
	Chinese Summary
	French Summary
	Outline

	I Artificial Negative Event Based Techniques for Business Process Conformance Checking
	Introduction
	Process Mining
	An Avalanche of Data
	Knowledge Discovery from Event Logs
	The Event Log as the Center Point of Analysis
	Crossing Boundaries

	Preliminaries
	Definitions
	State of the Art

	Artificial Negative Events

	Improved Artificial Negative Event Induction
	Introduction
	Preliminaries
	Related Work
	Artificial Negative Event Generation

	Improvements
	Improvement 1: Revised Temporal Constraint Confidence Measures
	Improvement 2: Variant Calculation with Loop Discovery
	Improvement 3: Dynamic Windows
	Improvement 4: Dependency Based Negative Event Generation

	Experimental Results
	Conclusions

	Conformance Checking with Weighted Artificial Negative Events
	Introduction
	Preliminaries
	Weighted Artificial Negative Events
	Rationale and Formalization
	Scalability
	Empirical Validation

	Checking Precision and Generalization
	Experimental Evaluation
	Setup
	Fixed Log Sizes
	Varying Log Sizes

	Discussed Topics
	Trace Replay with Positive and Negative Events
	Additional Configuration Parameters
	Alternative Generation Strategies
	Dealing with Noise

	Conclusions

	Artificial Negative Events as Unobserved Events
	Introduction
	Uncovering Implementation Gaps
	Enhancing Declarative Process Models
	Introduction
	Discovering Superfluous Modeled Behavior
	Extending the Declarative Model
	Example Case

	Towards an Event Existence Classification Framework

	II Other Advances in Process Mining
	Fodina: Robust and Flexible Heuristic Process Discovery
	Introduction
	Preliminaries
	Literature Overview
	Definitions
	Heuristic Dependency Based Process Discovery

	Identified Issues
	Unconnected Tasks
	Non-fitting Process Models
	ICS Fitness Calculation
	Incorrect Conversion to Petri Nets
	Mining Duplicate Tasks
	Long-distance Dependencies
	Mining Split and Join Semantics

	Process Discovery with Fodina
	Discovering Causal Nets
	Causal Net Conformance Checking Metrics

	Experimental Evaluation
	Experimental Setup
	Results

	Application: Bidimensional Process Discovery with BPMN
	Rationale
	Comparative Study
	Implementation
	Illustrating Example

	Conclusions
	Experimental Result Tables

	Event-Granular Real-Time Decomposed Conformance Analysis
	Introduction
	Preliminaries
	Related Work
	Definitions

	Methodology
	Phase 1: Decomposition
	Phase 2: Event Dispatching
	Phase 3: Replay
	Phase 4: Reporting and Visualization
	Implementation

	Case Example
	Description
	Experimental Scenario Evaluation
	Experimental Comparison

	Conclusions and Future Work

	Explaining Clustered Process Instances
	Introduction
	Trace Clustering
	State of the Art
	Problem Statement

	Alternative Cluster Explanation Techniques
	Visual Analysis of the Process Models
	Process Model Similarity Metrics
	Automated Dissimilarity Visualization in Process Models
	Footprints and Behavioral Profiles
	White Box Classification Model Learning
	Cross-Cluster Conformance Checking

	Instance-Level Explanations with SECPI
	Constructing the Data Set
	Deriving Explanations from a Support Vector Machine (SVM) Classifier
	Algorithm SECPI (Search for Explanations for Clusters of Process Instances)

	Experimental Evaluation
	Experimental setup
	Results of comparing SECPI to white box techniques

	Conclusion

	A Conformance Analysis Benchmarking Framework
	Introduction
	Process Models Quality Metrics
	Accuracy Metrics
	Comprehensibility Metrics
	Combining Metrics

	Architectural Requirements
	Ease of Use
	Reproducibility of Experiments
	Comparative Consistency
	Computation Management
	Extensibility

	Framework Architecture
	General Architecture
	Particular Items

	Future Work
	Other Process Model Representations
	Graphical Output
	Root Cause Analysis
	Automatizing Process Discovery
	Fine Tuning Event Classification and Non-control-flow Conformance Checking
	Standard Validation Event Log Set
	Fine Tuning Computation Management
	Cross-Validation
	Recommending Process Mining Techniques

	Petri Net Based Event Log Generation
	Rationale
	Objectives
	Functionality
	Architecture and Use Cases
	Comparison

	A Benchmarking Study
	Related Work
	Methodology
	Results
	Recommendations towards Choosing a Process Discovery Technique

	Conclusions
	Overview
	Future Work
	End Matter
	List of Figures
	List of Tables
	Bibliography
	Publication List
	Doctoral Dissertations List

